

BIPOLAR JUNCTION TRANSISTORS (BJTs)

THE SURPRISING ACTION OF A TRANSISTOR

VIASILIS

	Condition		Emitter Junction	Collector Junction	Region of operation
	1	FR	Forward biased	Reverse biased	Active
	П	FF	Forward biased	Forward biased	Saturation
		RR	Reverse biased	Reverse biased	Cutoff
ways of	IV	RF	Reverse biased	Forward biased	Inverted
hissing					

Transfers current signal from low resistance to high resistance **TRANS**FER + RES**ISTOR** = **TRANSISTOR**

AMPLIFYING ACTION OF A TRANSISTOR

Input signal, $V_s = 20$ m Volts

Emitter current,
$$I_e = \frac{V_s}{R_{in}} = \frac{20X10^{-3}}{40} = 0.5mA$$

Collector Current, $I_c \cong I_E = 0.5 mA$

Conc	lition	Emitter Junction	Collector Junction	Region of operation
I	FR	Forward biased	Reverse biased	Active

The effective value of the output signal voltage,

$$V_0 = I_c. R_L$$

= (0.5x10⁻³)(5x10³) = 2.5 volts

Voltage Amplification or voltage gain(A_v) = $\frac{V_0}{V_S} = \frac{2.5}{20x10^{-3}} = 125$