JUNCTION TRANSISTOR STRUCTURE &

SURPRISING ACTION OF TRANSISTOR

BIPOLAR JUNCTION TRANSISTORS (BJTs)

Er. J. Sravankumar Asst. Professor Department of Basic Engineering and Applied Sciences College of Agricultural Engineering and Technology(CAET), Anand Agricultural University(AAU), Godhra

INTRODUCTION

Invented in 1948

By John Bardeen, Walter Brattain and William Shockley @ Bell Laboratories in America

Revolutionized the electronics industry

JUNCTION TRANSISTOR STRUCTURE

Base Collector Emitter **Majority Charge Carriers: Electrons** -• C EO-**Minority Charge Carriers: Holes** ۰C Eо- \mathbf{B} (b) NPN-transistor symbol (a) NPN-type

(c) PNP-type

Transistor is basically a silicon or germanium crystal

THREE separate regions

NPN-type or PNP-type

Emitter : Heavily doped :emit or inject electrons (holes in case of PNP transistor) in to the base Base : Lightly doped : passes most of these electrons(holes in PNP) from emitter on to collector Collector : Moderately doped : collects electrons(holes in PNP) from base

A transistor has two PN-junctions

The junction between the emitter and the base and is called the **emitter-base junction or simply the** *emitter junction*

The junction between the collector and the base and is called the **collector-base junction or simply the** *collector junction*

THE SURPRISING ACTION OF A TRANSISTOR

	Condition		Emitter Junction	Collector Junction	Region of operation
	1	FR	Forward biased	Reverse biased	Active
		FF	Forward biased	Forward biased	Saturation
		RR	Reverse biased	Reverse biased	Cutoff
ways of biosing	IV	RF	Reverse biased	Forward biased	Inverted

FR CONFIGURATION

Fig : Biasing an NPN transistor for active operation

Fig : Biasing an NPN transistor for active operation

Total current flowing across the junction is sum of electron diffusion current and hole diffusion current

Base \rightarrow Deliberately Doped \rightarrow Few Holes \rightarrow VERY LESS HOLE CURRENT

Emitter \rightarrow Heavily Doped \rightarrow Majority electron carriers \rightarrow 99% ELECTRON CURRENT diffusing from emitter to base

Emitter currents (I_E) and Base currents (I_B) are quite large and equal ($I_E = I_B$)

Collector current $(I_c) = 0$

In the next section, we shall investigate the reason for I_C being large and I_B being small.

