# Lecture 02 Determination of Moisture Content

# Drying & Storage Engineering (PFE-304)

# **Moisture content determination**

There are several methods for determination of moisture content of agricultural products. For determination of moisture content of a particular product, the choice of method depends on many factors, they are

- (1) the form in which water is present in the product,
- (2) the relative amount of water present,
- (3) the rapidity of determination,
- (4) accuracy of method,
- (5) product's nature whether easily oxidised, and
- (6) the cost of equipment used.

#### DETERMINATION OF MOISTURE: METHODS

- 1. Drying Methods
  - Air oven/ Oven drying methods
- 2. Distillation method
- 3. Chemical Methods
  - Karl Fisher
  - Gas production
- 4. Physical Methods

# **DRYING METHODS**

- These methods rely on measuring the mass of water in a known mass of sample.
- The moisture content is determined by measuring the mass of a food before and after the water is removed by drying.

#### • Basic Principle

Water has a lower boiling point than the other major components within foods such as lipids, protein and carbohydrate.

# Air oven method

(i) When the moisture content of grains is upto 13%, 2-3 grams representative ground samples of grains are placed in an airoven. The temperature of the oven is set at 130°C and the samples are kept in oven for 1-2 hours. Afterwards, the samples are taken out and placed in a desiccator to cool down. The drop in the weight of grain is measured based on its initial weight.

# Air oven method

(ii) 25 to 30 grams of unground representative samples of grains are taken and placed in an air-oven at 100°C temperature. The samples are kept in it for 72 to 96 hours. Afterwards, the samples are taken out from oven placed in desiccator to cool down to room a temperature. Moisture content of samples is measured based on drop in weight from initial weight of sample.







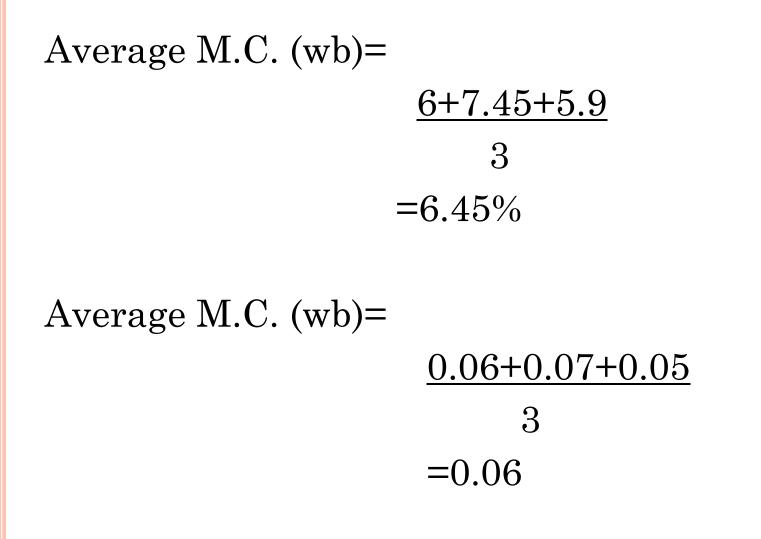


# EXAMPLE

| S. No.                                 | Test 1 | Test 2 | Test 3 |
|----------------------------------------|--------|--------|--------|
| MASS OF MOISTURE<br>BOX (g)            | 22.05  | 17.10  | 19.05  |
| INITIAL MASS OF<br>SAMPLE WITH M.B.(g) | 45.35  | 39.90  | 40.90  |
| FINAL MASS OF<br>SAMPLE WITH M.B.(g)   | 43.95  | 38.20  | 39.60  |

Calculate the moisture content of the wet basis and dry basis of the following table.

# Calculations


| SR   | MASS OF | INITIAL | FINAL   | MASS   | TOTAL   | MASS  |
|------|---------|---------|---------|--------|---------|-------|
| .NO. | MOISTUR | MASS OF | MASS    | OF     | MASS OF | OF    |
|      | E BOX   | SAMPLE  | OF      | WATER  | SAMPLE  | SOLID |
|      | (g)     | WITH    | SAMPLE  | IN     |         |       |
|      |         | M.B.(g) | WITH    | SAMPLE |         |       |
| (1)  | (2)     | (3)     | M.B.(g) | (5)    | (6)     | (7)   |
|      |         |         | (4)     | (3-4)  | (3-2)   | (6-5) |
| 1    | 22.05   | 43.95   | 45.95   | 1.4    | 23.3    | 21.9  |
|      |         |         |         |        |         |       |
| 2    | 17.10   | 39.90   | 38.20   | 1.7    | 22.8    | 21.1  |
|      |         |         |         |        |         |       |
| 3    | 19.05   | 40.90   | 39.60   | 1.3    | 21.85   | 20.5  |

# **Calculation:**

M.C. on weight basis for sample (1). M.C.(wb) = Mass of water X100Mass of sample =<u>1.4</u> X100 23.3=6% M.C.(wb) = Mass of waterMass of sample = 1.423.3= 0.06

1. M.C. on weight basis sample (2). M.C.(wb)= Mass of water X100 Mass of sample = 1.7 X100 22.8=7.45%M.C.(wb) = Mass of waterMass of sample = 1.7 22.8 = 0.07

1. M.C. on weight basis sample (3). M.C.(wb)= <u>Mass of water</u> X100 Mass of sample =<u>1</u>.3 X100 21.85=5.9%M.C.(wb) = Mass of waterMass of sample = 1.321.85= 0.05



# 2. M.C. on Dry basis sample (1). M.C.(db)= <u>Mass of water</u> X100

Mass of sample = 1.4 X100 21.9 =6.3%

# $M.C.(wb) = \underline{Mass of water}$ Mass of sample $= \underline{1.4}$ 21.9 = 0.06

#### 2. M.C. on Dry basis sample (2). M.C.(wb)= <u>Mass\_of water</u> X100

Mass of sample = 1.7 X100 21.7 =8.0%

 $M.C.(wb) = \underline{Mass of water}$  Mass of sample  $= \underline{1.7}$  21.7 = 0.08

#### 2. M.C. on Dry basis sample (3). M.C.(wb)= <u>Mass\_of water</u> X100

Mass of sample = 1.3 X100 20.55 =6.3%

 $M.C.(wb) = \underline{Mass of water}$  Mass of sample  $= \underline{1.3}$  20.55 = 0.06

Average M.C. (db)=

# $\frac{6.3 + 8.0 + 6.3}{3} = 6.8\%$

#### Average M.C. (db)=

<u>0.06+0.08+0.06</u> 3 = 0.06

1.M.C.(wb) = 6.4%

# 2.M.C.(wb) = 0.06

# 3.M.C.(db) = 6.8%

# 4.M.C.(db) = 0.06

#### **TOTAL SOLID CONTENT**

• Sometimes, moisture content is also reported as "total solid"

• Total solid is a measure of the amount of material remaining after all the water has been evaporated

Advantages

- Cheap, easy to use, many samples can be analyzed simultaneously
- Disadvantages
  - Destructive, time consuming
- Total solids contents of food can be calculated using one of the equations below:
  - % Total solids (wt/wt) = <u>wt of dry sample</u> X 100 wt of wet sample

# TYPES OF OVEN

- 1. Convection Oven
  - Greatest temperature variations - because hot air slowly circulated with out the aid of fan, air movement is obstructed further by pans placed in the oven



#### FORCED DRAFT OVEN

•The least temperature differential across the interior (< 1°C). Air is circulated by a fan that forces air movement throughout the oven cavity

•Drying period 0.75 – 24 hr, depending on food sample and its pretreatment



# VACUUM OVEN

- Drying under reduced pressure (25 – 100mm Hg).
- Able to obtain a more complete removal of water and volatiles without decomposition within a 3 – 6 hr



#### **MICROWAVE OVEN**

Weighed samples are placed in a microwave oven for a specified time and powerlevel and their dried mass is weighed.



- In microwave oven, water evaporation is due to absorption of microwave energy, which causes them to become thermally excited.
- Advantage
  - simple

- Disadvantage:
  - Care must be taken to standardize the drying procedure and ensure that the microwave energy is applied evenly across the sample.

# **INFRARED LAMP DRYING**

# Principle of drying: Similar to microwave oven

#### Advantages: rapid and inexpensive

• This is because the IR energy penetrates into the sample

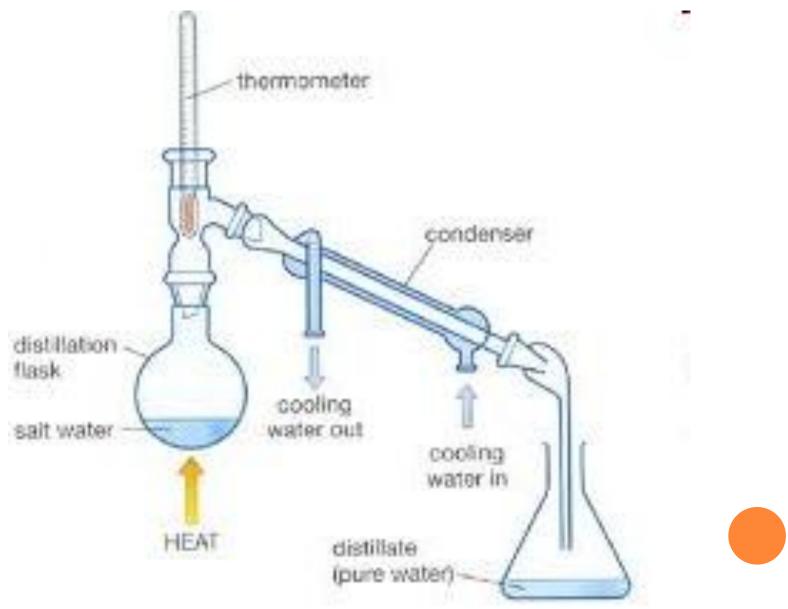
To produce consistent results

- one must control the distanc between the sample and IR lamp
- The dimensions of the samples

Not officially recognized due to difficult in standardization of procedure.



# **MOISTURE ANALYZER**


- Using a digital balance, the test sample is placed on an aluminum pan and the constant temperature is applied to the test sample.
- Instrument automatically weighs and calculates the % of moisture or solids



# **DISTILLATION METHODS**

- Direct measurement of the amount of water removed from a food sample by evaporation
- Involve co-distilling the moisture in a food sample with a high boiling point solvent that is immiscible in water, collecting the mixture that distills off and then measuring the volume of water

#### **DISTILLATION METHODS**

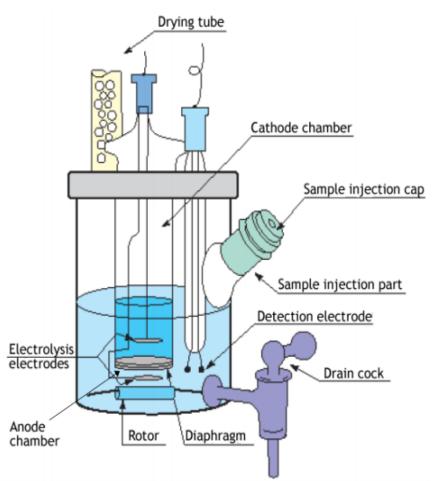


#### • Advantages:

- Suitable for low moisture foods and foods containing volatile oils such as herbs and spices
- Cheap, easy to set up and operate

#### o Disadvantage:

• Destructive, time consuming, involve flammable solvent, not applicable for some types of foods


# **CHEMICAL METHODS**

- Moisture is determined by the reactions between water and certain chemical reagents
- A chemical reagent is added to the food that reacts specifically with water to produce a measurable change in the properties of the system, *e.g.*, mass, volume, pressure, pH, color, conductivity.
- Type of chemical method commonly used:
  - Karl Fischer Titration
  - Gas production Methods

# **KARL-FISCHER TITRATION**

- Determine the low moisture foods (*e.g.* dried fruits and vegetables, confectionary, coffee, oils and fats) or low moisture food high in sugar or protein.
- It is based on the following reaction:  $2H_2O + SO_2 + I_2 \rightarrow H_2SO_4 + 2HI$

# **KARL-FISCHER TITRATION**



- Water and iodine are consumed in a 1:1 mole ratio in the KF reaction
- Once the reaction consumes all of the water present, the presence of excess iodine is detected by the indicator electrode
- Percent water is calculated based on the [I<sub>2</sub>] in the Karl Fischer titrating reagent (i.e. titer) an the amount of KF reagent consumed

# **GAS PRODUCTION METHODS**

 Commercial instruments are also available that utilize specific reactions between chemical reagents and water that lead to the production of a gas





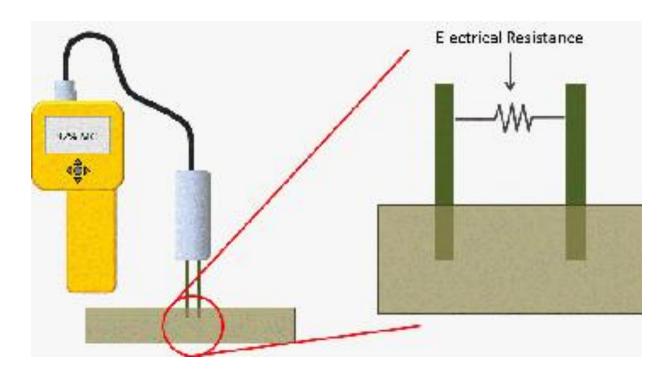
# **GAS PRODUCTION METHODS**

• When a food sample is mixed with powdered calcium carbide, the amount of acetylene gas produced is related to the moisture content.

 $CaC_2 + 2H_2O = Ca (OH)_2 + C_2H_2$ 

- The amount of gas produced can be measured by
  - 1. The volume of the gas produced
  - 2. The decrease in the mass of the sample after the gas is released
  - 3. The increase in pressure of a closed vessel containing the reactants

# **PHYSICAL METHODS**


#### **Dielectric Method**

- Property: the ability of a substance to store electrical energy
- Moisture is determined by measuring the change in capacitance or resistance to an electric current passed through the sample
- Limited to food contains not more than 30-35% moisture.



## **Conductivity method**

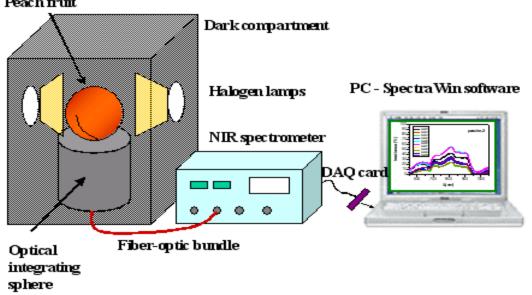
- The conductivity of an electric current increases with the percentage of moisture sample
- Must keep the temperature constant



## **Hydrometry**

- Measuring specific gravity or density
- Best applied to the analysis of solutions consisting of only one component in a medium of water
- Commonly used in beverages, salt brines and sugar solutions
- Example: Pycnometer, hydrometer,

#### **Refractometry**


- Determine the soluble solids in fruits and fruit products
- Rapid and accurate methods
- Principle: when a beam of light is passed from one medium to another and the density differs, then the beam is bent or refracted.



#### **INFRARED ANALYSIS**

Principle:

- Measure absorption of radiation by molecules in foods
- Different functional groups absorb different frequencies of infrared radiation
- For water, near-infrared (NIR) bands (1400-1450, 1920-1950 nm) are characteristic of the –OH stretch of water molecule



# **COMPARISON OF THE METHODS**

- Oven drying methods: involve the removal of moisture from the sample and then a weight determination of the solids remaining.
- Distillation methods: Involve a separation of the moisture from the solids. The moisture content is calculated directly by volume.
- Chemical Methods: reflected as the amount of titrant used.

# **COMPARISON OF THE METHODS**

- Dielectric and conductivity methods: electrical properties of water
- Hydrometric methods: based on the relationship between specific gravity and moisture content
- Refractive Index: how water in a sample affects the refraction of light