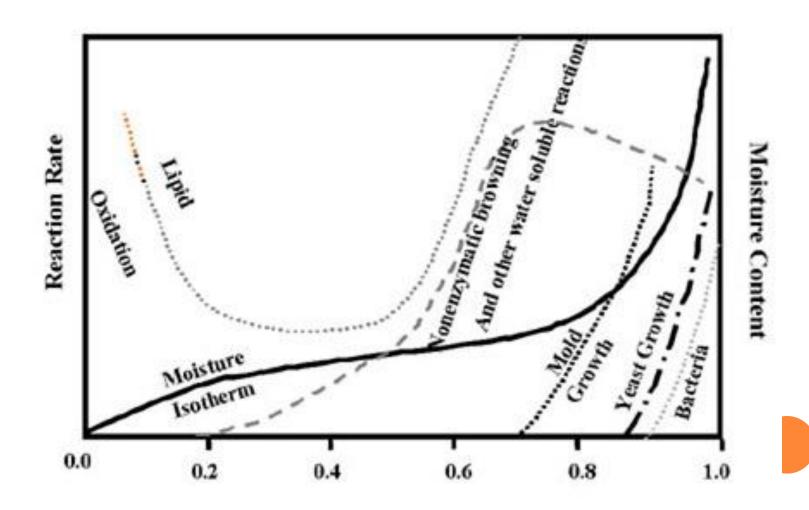

Drying & Storage Engineering (PFE-304)

Lecture 01

Suggested text books

Drying

- Drying food is one of humanity's oldest ways of preserving food, because it is simple, low-tech and offers an excellent way to put aside the bounty of summer for the winter.
- <u>Drying</u> refers to removal of moisture from grains or other products to a predetermined level.
- <u>Dehydration</u> refers to removal of moisture to very low levels usually to bone dry condition


Importance of drying

- Drying permits early harvest of crops
- It helps in proper planning of harvesting season
- Drying of agricultural products to optimum moisture content results in safe storage.
- Dried products could be made available by storing the product
- Heat of respiration during storage can be controlled by drying or aeration.
- Agricultural byproducts and waste could be converted in to useful products.

Requirements for moisture content determination

- Legal and labeling requirements
- Economically important requirements
- Shelf life of the food or food products
- Food quality measurements
- Food processing operations

Effect of moisture content & water activity

1- Moisture is a quality factor in the preservation of some products and affects stability in

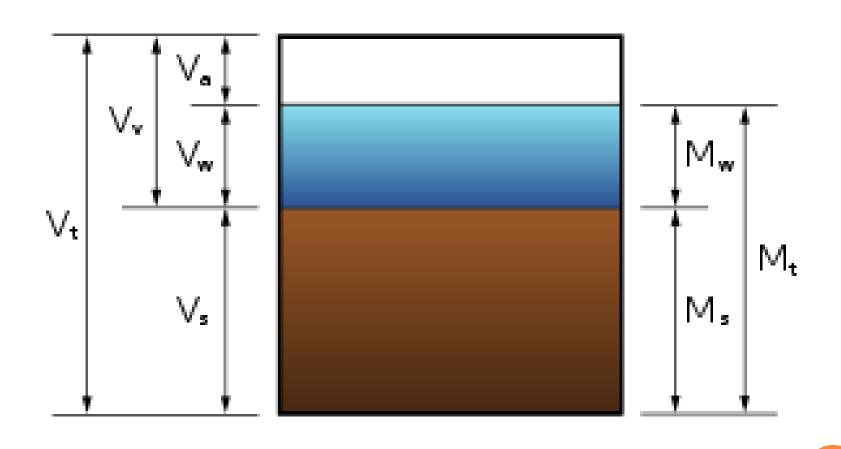
- a. Dehydrated vegetables and fruits
- b. Dried milks
- c. Powdered eggs
- d. Dehydrated potatoes
- e. Spices and herbs

2- Moisture is used as a quality factor for

- a. Jams and jellies, to prevent sugar crystallization
- b. Sugar syrups
- c. Prepared cereals conventional,4-8%; puffed, 7-8%

Food Item	Moisture content (%, wb)
White bread, enriched	13.4
Corn flakes cereal	3.0
Milk, whole, fluid, 3.3% fat	88.0
Ice cream, vanilla	61.0
Margarine, regular, hard, corn	16.7
Oil	0
Oranges, raw	86.8
Apples, raw, with skin	83.9
Beef, ground, extra lean, raw	63.2
Egg, whole, raw, fresh	75.3
Peanuts, all types, dry roasted with salt	1.6
Sugar, granulated	0
Sugar, brown	1.6
Cucumbers, with peel, raw	96.0

Moisture content representation:
The amount of moisture in a product is given on the basis of the weight of water present in the product and is usually expressed in percent.


- ☐ Moisture content is designated by two methods,
- (1) Wet basis (wb) and
- (2) Dry basis (db).

Moisture content

Moisture content (Dry basis)
moisture content is the ratio of
the mass of water in a sample to the
mass of solids in the sample,
expressed as a percentage.

Moisture content (Wet basis)
moisture content is the ratio of
the mass of water in a sample to the
mass of the sample, expressed as a
percentage.

Moisture content

MOISTURE CONTENT

Wet basis:

The moisture content in this method is represented by the following expression,

Moisture content = Mass of water in sample X100 Mass of product sample = (Mw/Mt) x 100

MOISTURE CONTENT

Dry basis:

The moisture content in this method is represented by the following expression,

% Moisture content (wt/wt)= Mass of water in sample X100
Weight of dry matter product sample

 $= (Mw/Ms) \times 100$