

Solution: The shape of furrow opened by the given cultivator tine would be like a right isosceles triangle, therefore, the base will be equal to twice the depth of furrow.

Now, the area of x-section of an individual furrow would be:

$$= \frac{\text{Base} \times \text{Heigh}}{2}$$
$$= \frac{0.20 \times 0.10}{2}$$
$$= 0.01 \text{ m}^2$$

Draft of one tine = x-sectional area of one furrow × unit draft = 0.01×20 = 0.20 kN

Total draft required to pull the cultivator

= Draft of one tine × number of tines = 0.20 × 11 = 2.20 kN

Ans.

Problem 2 A 9 tine tractor operated cultivator having a tine spacing of 20 cm is operating at a speed of 4.50 km/h. The individual tine is making 15 cm wide and 12 cm deep furrow. The soil resistance is 0.50 kg/cm². Considering a time loss of 12 percent at headlands, determine the field capacity and horse power required to pull this cultivator.

Solution:

Field capacity =
$$\frac{\text{Number of tines} \times \text{Tine spacing} \times \text{Speed of operation}}{10} \times \text{Field efficiency}$$

$$= \frac{9 \times 0.20 \times 4.50}{10} \times \frac{88}{100}$$

$$= 0.71 \text{ ha/h}$$

Total draft = Furrow x-section
$$\times$$
 soil resistance
= $9 \times 15 \times 12 \times 0.50$
= 810 kg

Unit draft =
$$\frac{\text{Total draft}}{\text{Furrow } x\text{-section}}$$
Horse power =
$$\frac{\text{Total draft} \times \text{Speed of operation}}{4500}$$
=
$$\frac{810 \times 75}{4500}$$
= 13.50 hp

Ans.

Interculture operation in sugarcane crop is required to be done having a total area of 8.50 ha. The weeding tool is having an overall width of 150 cm and is being operated at forward speed of 3.50 km/h. The time loss in turning and minor adjustments, etc. is 8 percent. Determine the field capacity of the weeder and total time required to cover the given area.

Solution:

Field capacity =
$$\frac{\text{Overall width of weeding tool} \times \text{Speed of operation}}{10} \times \text{Field efficiency}$$

$$= \frac{150 \times 3.50}{10} \times \frac{92}{100}$$

$$= 0.48$$

Time required to cover 8.50 ha area

$$= \frac{8.50}{0.48}$$

= 17.71 hours

Ans.

Problem 4 In a cotton field, the following observations were recorded while performing weeding operation with a power weeder:

(i)	Speed of operation	: 3.20 km/h
(ii)	Weed population before weeding operation	$: 1500 \text{ g/m}^2$
	Weed population after weeding operation	$: 400 \text{ g/m}^2$
(iv)	Effective width of operation of weeder	: 600 mm
(v)	Depth of operation	: 100 mm
(vi)	Total draft	: 680 kg
(vii)	Field efficiency of weeder	: 86 percent
	Plant damage	: 8 percent

Determine: Field capacity, power required to pull the weeder, weeding efficiency, performance index of the weeder and unit draft of the weeder.

Solution: Field capacity =
$$\frac{\text{Total width of weeder} \times \text{speed of weeder}}{10}$$

= $\frac{0.60 \times 3.20}{10} \times 0.86 = 0.17$

Power required =
$$\frac{\text{Total draft} \times \text{speed of operation}}{4500}$$

= $\frac{680 \times 53.33}{4500}$
= 8.06
= Weeding efficiency = $\frac{W_1 - W_2}{W_1} \times 100$
= $\frac{1500 - 400}{1500} \times 100$
= 73.33
PI = $\frac{\text{Field Capacity} \times (100 - \text{Damage Factor}) \times \text{Weeding Index}}{\text{Input Power}}$
= $\frac{0.17 \times (100 - 8) \times 73.33}{8.06}$
= 142.33
Unit draft = $\frac{\text{Total draft}}{\text{Furrow x-section}} = \frac{680}{60 \times 10}$

= 1.13

Ans.