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Chapter Objectives

 Roundoff Error
 Understanding how roundoff errors occur because digital computers 

have a limited ability to represent numbers.
 Understanding why floating-point numbers have limits on their range 

and precision.

 Truncation Error
 Recognizing that truncation errors occur when exact mathematical 

formulations are represented by approximations.
 Knowing how to use the Taylor series to estimate truncation errors.
 Understanding how to write forward, backward, and centered finite-

difference approximations of the first and second derivatives.
 Recognizing that efforts to minimize truncation errors can sometimes 

increase roundoff errors. 
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Error Definitions

 True error (Et): the difference between the true value and 
the approximation.
 Et = True value – approximation

 Absolute error (|Et|): the absolute difference between the 
true value and the approximation.

 True fractional relative error: the true error divided by 
the true value.
 True fractional relative error = (true value – approximation)/true value

 Relative error (t): the true fractional relative error 
expressed as a percentage.
 t= true fractional relative error * 100%
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Error Definitions (cont)

 The previous definitions of error relied on 
knowing a true value.  If that is not the case, 
approximations can be made to the error.

 The approximate percent relative error can be 
given as the approximate error divided by the 
approximation, expressed as a percentage -
though this presents the challenge of finding the 
approximate error!

 For iterative processes, the error can be 
approximated as the difference in values between 
successive iterations.
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Using Error Estimates

 Often, when performing calculations, we may not 
be concerned with the sign of the error but are 
interested in whether the absolute value of the 
percent relative error is lower than a prespecified 
tolerance s.  For such cases, the computation is 
repeated until | a |< s

 This relationship is referred to as a stopping 
criterion.
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Example 4.1 (1)

 Q. How many terms are required in calculation of    
e0.5(=1.648721...) using a Maclaurin series expansion, 
in which the result is correct to at least 3 significant figure?
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Error criterion for 3 significant figure

Maclaurin series 
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Terms Results t (%) a (%)

1
2
3
4
5
6

1
1.5
1.625
1.645800000
1.648437500
1.648697917

39.3
9.02
1.44
0.175
0.0172
0.00142

33.3
7.69
1.27
0.158
0.0158

Example 4.1 (2)
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Roundoff Errors

 Roundoff errors arise because digital computers 
cannot represent some quantities exactly.  There 
are two major facets of roundoff errors involved 
in numerical calculations:
Digital computers have size and precision limits on their 

ability to represent numbers.
Certain numerical manipulations are highly sensitive to 

roundoff errors.
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Computer Number Representation

 Bit  : binary number (0/1)

 Byte : 8 bit

 Word 
 Basic unit for expressing number 
 ex) 16 bit or 2byte word

 Decimal expression (positional notation)

 Binary expression (positional notation)

)109()102()104()106()108(9.8642 10123 

5.55.0104)21()21()20()21(1.101 1012  
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Integer Representation

 For an n bit word, the range would be from -2n-1 + 2n-1-1
 The numbers above or below the range can’t be represented   

10
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(10101101) 2 2 2 2 2 128 32 8 4 1
                    (173)

         


Ex. 16 bit word
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Integer Representation

 Upper limit, Lower limit and zero for 16 bit word

14 13 2 1 0 15
2(0111 111) 2 2   2 2 2 32,767 2 1         

2(0000 000) 0    

2(1000 000) 32,768     

1514 13 2 1 0
2 1)(1111 111) 2 2   2 2 2 32,767 (2           

-32768 (-2n-1)< integer < 32767 (2n-1-1)
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Floating Point Representation 

 The number is expressed as s x be

where, s: the mantissa (significand), b:base, e: exponent

 Ex.) Base-10 computer with a 5 bit word

Range = +9.9X10+9 ~ +1.0 X 10-9

0 0S d
1 1 2 S d .d 10
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Roundoff Errors

 Base-10 computer with a 5 bit word

 2-5= 0.03125   3.1 x 10-2

 roundoff error = 
(0.03125-0.031)/0.03125 = 0.008 = 0.8%

0 0S d
1 1 2 S d .d 10

 Because of the limited number of bits for significand and exponent, 
Roundoff errors is occur. 

 Although adding significand digits can improve the approximation, 
such quantities will always have some roundoff error when stored 
in a computer

π= 3.141593for 16-bit word computer
π= 3.14159265358979 for 32-bit word computer
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Computer Number Representation

 By default, MATLAB has adopted the IEEE 
double-precision format in which eight bytes (64 
bits) are used to represent floating-point numbers:
n=±(1+f) x 2e

 The sign is determined by a sign bit
 The mantissa f is determined by a 52-bit binary 

number
 The exponent e is determined by an 11-bit binary 

number, from which 1023 is subtracted to get e
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Floating Point Ranges

 The exponent range is -1022 to 1023.
(11 bits including 1 bit for sign)

 The largest possible number MATLAB can store has
- +1.111111…111 X 21023 = (2-2-52)X 21023

- This yields approximately 21024 = 1.7997 X 10308

 The smallest possible number MATLAB can store with full precision 
has 

- +1.00000…00000 X 2-1022

- This yields 2-1022 = 2.2251 X 10-308

Note: Hole was greatly narrowed.

1.7997 X 103082.2251 X 10-308-2.2251 X 10-308-1.7997 X 10308
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Maximum, Minimum & Machine epsilon in 
MATLAB

>> format long
>> realmax
ans =

1.797693134862316e+308
>> realmin
ans =

2.225073858507201e-308
>> eps (machine epsilon)
ans =

2.220446049250313e-016

 The 52 bits for the significand f correspond to about 15 to 16 base-10 
digits. 

 The machine epsilon in MATLAB’s representation of a number 
is thus 2-52=2.2204 x 10-16
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Numerical Problems

 1.557+0.04341 = 0.1557 x 101+ 0.004341 x 101

= 0.160041 x 101 = 0.1600 x 101

 The excess number of digits were chopped off, 
leading to error.

 36.41 – 26.86 = 0.3641 x 102 - 0.3641 x 102 

= 0.0955 x 102 0.9550 x 101

 The zero added to the end.

 0.7642 x 103–0.7641 x 103 = 0.0001 x 103 = 0.1000 
 Three zeros are appended.
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Truncation Errors

 Truncation errors are those that result from using 
an approximation in place of an exact 
mathematical procedure.

 Example 1: approximation to a derivative using a 
finite-difference equation:

Example 2: The Taylor Series

dv
dt


v
t


v(ti1)  v(ti)

ti1  ti
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The Taylor Theorem and Series

 The Taylor theorem states that any smooth 
function can be approximated as a polynomial.

 The Taylor series provides a means to express this 
idea mathematically.
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The Taylor Series


f xi1  f xi  f ' xi h  f '' xi 

2!
h2 

f (3) xi 
3!

h3 
f (n ) xi 

n!
hn  Rn
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Truncation Error

 In general, the nth order Taylor series expansion 
will be exact for an nth order polynomial.

 In other cases, the remainder term Rn is of the 
order of hn+1, meaning:
The more terms are used, the smaller the error, and
The smaller the spacing, the smaller the error for a given 

number of terms.

21



School of Mechanical 
Engineering

Numerical Differentiation

 The first order Taylor series can be used to 
calculate approximations to derivatives:
Given:

Then: 

 This is termed a “forward” difference because it 
utilizes data at i and i+1 to estimate the derivative.

f (xi1)  f (xi)  f ' (xi)h O(h2)

f ' (xi) 
f (xi1)  f (xi)

h
O(h)
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Differentiation (cont)

 There are also backward difference and centered 
difference approximations, depending on the points used:

 Forward:

 Backward:

 Centered:

f ' (xi) 
f (xi1)  f (xi)

h
O(h)

f ' (xi) 
f (xi)  f (xi1)

h
O(h)

f ' (xi) 
f (xi1)  f (xi1)

2h
O(h2)
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Total Numerical Error

 The total numerical error is the summation of the 
truncation and roundoff errors.

 The truncation error generally increases as the 
step size increases, while the roundoff error 
decreases as the step size increases - this leads to a 
point of diminishing returns for step size.
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Other Errors

 Blunders - errors caused by malfunctions of the 
computer or human imperfection.

 Model errors - errors resulting from incomplete 
mathematical models.

 Data uncertainty - errors resulting from the 
accuracy and/or precision of the data. 
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