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Chapter Objectives

O Roundoff Error

¢ Understanding how roundoff errors occur because digital computers
have a limited ability to represent numbers.

¢ Understanding why floating-point numbers have limits on their range
and precision.

Q Truncation Error

¢ Recognizing that truncation errors occur when exact mathematical
formulations are represented by approximations.

¢ Knowing how to use the Taylor series to estimate truncation errors.

¢ Understanding how to write forward, backward, and centered finite-
difference approximations of the first and second derivatives.

¢ Recognizing that efforts to minimize truncation errors can sometimes
increase roundoff errors.
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Error Definitions

Q True error (E,): the difference between the true value and
the approximation.

¢ E =True value — approximation

a Absolute error (|E,|): the absolute difference between the
true value and the approximation.

Q True fractional relative error: the true error divided by
the true value.

¢ True fractional relative error = (true value — approximation)/true value

0O Relative error (g,): the true fractional relative error
expressed as a percentage.

¢ ¢~ true fractional relative error * 100%
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Error Definitions (cont)

Q The previous definitions of error relied on
knowing a true value. If that is not the case,
approximations can be made to the error.

Q The approximate percent relative error can be
given as the approximate error divided by the
approximation, expressed as a percentage -
though this presents the challenge of finding the
approximate error!

Q For iterative processes, the error can be
approximated as the difference in values between
successive Iterations.
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Using Error Estimates

a Often, when performing calculations, we may not
be concerned with the sign of the error but are
Interested in whether the absolute value of the
percent relative error Is lower than a prespecified
tolerance g,. For such cases, the computation is

repeated until | ¢, < g,

a This relationship iIs referred to as a stopping
criterion.
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Example 4.1 (1)

® (. How many terms are required in calculation of
e¥3(=1.648721...) using a Maclaurin series expansion,
in which the result is correct to at least 3 significant figure?

x? X X"

eX =14+ X+ + + e+ — Maclaurin series
! ! !
! ! n!

Error criterion for 3 significant figure
e, =(0.5x10°)% = (0.5x10°)% = 0.05%

(Scarborough, 1966)
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Example 4.1 (2)

Terms Results g, (%0) e, (%0)
1 1 39.3
2 1.5 9.02 33.3
3 1.625 1.44 7.69
4 1.645800000 0.175 1.27
5 1.648437500 0.0172 0.158
6 1.648697917 0.00142 0.0158

Scarborough Error Criterion i1s Conservative!!
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Roundoff Errors

a Roundoff errors arise because digital computers
cannot represent some guantities exactly. There
are two major facets of roundoff errors involved
In numerical calculations:

¢ Digital computers have size and precision limits on their
ability to represent numbers.

¢ Certain numerical manipulations are highly sensitive to
roundoff errors.
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Computer Number Representation

® Bit : binary number (0/1)
® Byte: 8 bit

® Word
= Basic unit for expressing number
= ¢x) 16 bit or 2byte word

® Decimal expression (positional notation)
8642.9 = (8x10°) + (6x10°) +(4x10") +(2x10°)+(9x107")

® Binary expression (positional notation)
101.1=(1x2*)+(0x2Y+(1x2°)+(1x2")=44+0+14+0.5=5.5
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Integer Representation

e [or an n bit word, the range would be from -2"! + 2n-1-1
e The numbers above or below the range can’t be represented

Ex. 16 bit word

O 28R o ¢ o (B e I R O B

S'T | Magr;itude
ign
(10101101), =2" +2°+2° +2* +2° =128 +32+8+4 +1
=(173),
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Integer Representation

® Upper limit, Lower limit and zero for 16 bit word

(O111----
(0000 --

1111----
(1000 ---

111), =2"* 428 + eee +224+2'+2%=32,767=2" -1
000), = 0

111), =2 +27 + eee +22 42" +2°=-32,767=—(2" -1)
000), =-32,768

-32768 (-2"1)< integer < 32767 (2-1)
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Floating Point Representation

® The number is expressed as S X b®
where, s: the mantissa (significand), b:base, e: exponent

® Ex.) Base-10 computer with a 5 bit word
S,d
S,d,.d, x10™™
Range = +9.9X10™ ~ +1.0 X 10~

Minimum Smallest Maximum
—9.9 x 10° -1.0x107° 1.0x10°° 9.9 x 10°
Overflowl : Underflow I IOverrow

v

“Hole"” at zero
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Roundoff Errors

® Base-10 computer with a 5 bit word
Syd
Sd,.d, x10™%

® 2°5=0.03125 - 3.1x1072
- roundoff error =

(0.03125-0.031)/0.03125 = 0.008 = 0.8%

® Because of the limited number of bits for significand and exponent,
Roundoff errors is occur.

n=3.141593for 16-bit word computer
n=3.14159265358979 for 32-bit word computer

® Although adding significand digits can improve the approximation,

such quantities will always have some roundoff error when stored
In a computer
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Computer Number Representation

Q By default, MATLAB has adopted the IEEE
double-precision format in which eight bytes (64

bits

) are used to represent floating-point numbers:

N=1

(1+f) x 2¢

Q The sign is determined by a sign bit

a The mantissa f is determined by a 52-bit binary
number

Q The exponent e is determined by an 11-bit binary
number, from which 1023 is subtracted to get e
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Floating Point Ranges

® The exponent range is -1022 to 1023.
(11 bits including 1 bit for sign)

® The largest possible number MATLAB can store has
-+1.111111...111 X 21023 = (2-2-52)X 21023
- This yields approximately 21924 =1.7997 X 103%8

® The smallest possible number MATLAB can store with full precision
has

- +1.00000...00000 X 2-1022
- This yields 2-1922 = 22251 X 10-3%8

Minimum Smallest Maximum
l AN l
-1.7997 X 10308 -2.2251 X 10308 2.2251 X 10-308 1.7997 X 10308
Overflow | | Underflow | | Overflow
Y
Note: Hole was greatly narrowed. “HolG" gt 288
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Maximum, Minimum & Machine epsilon in 16

MATI AB

® The 52 bits for the significand f correspond to about 15 to 16 base-10

digits.

® The machine epsilon in MATLAB’s representation of a number

is thus 2 32=2.2204 x 10-16

>> format long

>> realmax

ans =
1.797693134862316e+308

>> realmin

ans =
2.225073858507201e-308

>> eps (machine epsilon)

ans =

2.220446049250313e-016

166A'w
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Numerical Problems

® 1.557+0.04341 =0.1557 x 10'+ 0.004341 x 10!
=0.160041 x 10 =0.1600 x 10!

® The excess number of digits were chopped off,
leading to error.

® 3641 -26.86=0.3641x 102-0.3641 x 102
=0.0955x 10?2 = 0.9550 x 10!
® The zero added to the end.

0.7642 x 10°-0.7641 x 10° = 0.0001 x 10° = 0.1000
® Three zeros are appended.
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Truncation Errors

Q Truncation errors are those that result from using
an approximation in place of an exact
mathematical procedure.

Q Example 1: approximation to a derivative using a
finite-difference equation:
dv _Av _ v(t,,)—V(t)
dt ~ At ot -t

1+ |

Example 2: The Taylor Series
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The Taylor Theorem and Series

a The Taylor theorem states that any smooth
function can be approximated as a polynomial.

Q The Taylor series provides a means to express this
Idea mathematically.

X=X, f,(XO)‘l- (X_XO)

(X o Xo)n
1! 2! !

f(x)=f(x,)+ : fr(x,)++ f™W(x,)+R,
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The Taylor Series

) (3) (n)
f(x)= (%) f'(Xi)h+%!X‘)h2+ f 3fxi>h3+...+ f nfx%nmn

flx)
Zero order

Jiq) = flx)
---.._._ FJ St Orde
1.0 - TTS @ flr ) = flx) + Flrh
0.5 -
5 .f(x;+1}—f(x)+f’( )h+f( %)
Jlxipq)
0 ' ;
x.=0 Xigq = 1 =
h
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Truncation Error

A In general, the nth order Taylor series expansion
will be exact for an nth order polynomial.

Q In other cases, the remainder term R, Is of the
order of h"*1 meaning:
# The more terms are used, the smaller the error, and

® The smaller the spacing, the smaller the error for a given
number of terms.
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Numerical Differentiation

Qa The first order Taylor series can be used to
calculate approximations to derivatives:

¢ Given: f(x, )= f(x,)+ f'(x)h+0(h?)

¢ Then: f'(xi): f(xi+1)h_ f(X‘)+O(h)

a This is termed a “forward’ difference because It
utilizes data at 1 and 1+1 to estimate the derivative.
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Differentiation (cont)

a There are also backward difference and centered
difference approximations, depending on the points used:

aQ Forward:
f'(xi): f(xi+1)h_ f(XI)-I-O(h)

a Backward:

f'(Xi): f(xi)_ f(Xi—l)_I_O(h)
Q Centered: h

f(x)= f (Xi“)z_h F(Xi) +0(h?)
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Total Numerical Error

a The total numerical error iIs the summation of the
truncation and roundoff errors.

Q The truncation error generally increases as the
step size increases, while the roundoff error
decreases as the step size increases - this leads to a
point of diminishing returns for step size.

Point of
diminishing
returns

Log error

Log step size
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Other Errors

Q Blunders - errors caused by malfunctions of the
computer or human imperfection.

Q Model errors - errors resulting from incomplete
mathematical models.

Qa Data uncertainty - errors resulting from the
accuracy and/or precision of the data.
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