
WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 1

 Introduction to PHP:

 The full form of PHP is “Hypertext Preprocessor”. Its original name was

“Personal Home Page”

 Rasmus Lerdorf software engineer, Apache team member is the creator and

original driving force behind PHP. The first part of PHP was developed for his

personal use in late 1994.

 By the middle of 1997, PHP was being used on approximately 50,000 sites

worldwide.

 PHP is server-side scripting language, which can be embedded in HTML or used

as a stand-alone.

 PHP doesn’t do anything about what a page looks and sounds like. In fact, most

of what PHP does is invisible to the end user.

 Someone looking at a PHP page will not necessarily be able to tell that it was not

written purely in HTML, because usually the result of PHP is HTML.

 PHP is an official module of Apache HTTP Server.

 PHP is fully cross-platform, meaning it runs native on several flavors of Unix, as

well as on Windows and now on Mac OS X.

 Advantages of PHP

 Cost: PHP costs you nothing. It is open source software and doesn’t need to

purchase it for development.

 Ease of Use: PHP is easy to learn, compared to the others. A lot of Ready-made

PHP scripts are freely available in market so, you can use them in your project or

get some help from them.

 HTML- Support: PHP is embedded within HTML; In other words, PHP pages

are ordinary HTML pages that escape into PHP mode only when necessary. When

a client requests this page, the web server preprocesses it. This means it goes

through the page from top to bottom, looking for sections of PHP, which it will

try to resolve.

 Cross-platform compatibility: PHP and MySQL run native on every popular

flavor of Unix and windows. A huge percentage of the world’s HTTP servers run

on one of these two classes of operating system.

 PHP is compatible with the three leading Web servers: Apache HTTP Server

for Unix and Windows, Microsoft Internet Information Server, and Netscape

Enterprise Server. It also works with several lesser-known servers, including Alex

Blits’ fhttpd, Microsoft’s Personal Web Server, AOL Server and Omnicentrix’s

Omniserver application server.

 Stability: The word stable means two different things in this context:

 The server doesn’t need to be rebooted often

 The software doesn’t change radically and incompatibly from

release to release.

To our advantage, both of these apply to both MySQL and PHP.

 Speed: PHP is pleasingly zippy in its execution, especially when compiled as and

Apache module on the Unix side. Although it takes a slight performance hit by

being interpreted rather than compiled, this is far outweighed by the benefits PHP

drives from its status as a Web server module.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 2

 Basic PHP Syntax

 A PHP file normally contains HTML tags, just like an HTML file, and some PHP

scripting code.

 A PHP scripting block starts with <?php and ends with ?>.

 A PHP scripting block can be placed anywhere in the document.

 Each code line in PHP must end with a semicolon. The semicolon is a separator

and is used to distinguish one set of instructions from another.

 There are two basic statements to output text with PHP: echo and print.

 In the example we have used the echo statement to output the text "Hello World".

<html>
<body>

<?php
echo "Hello World";

?>
</body>
</html>

 Escaping from HTML

 When PHP parses a file, it looks for opening and closing tags, which tell PHP to

start and stop interpreting the code between them.

 Parsing in this manner allows php to be embedded in different documents, as the

PHP parser ignores everything outside of a pair of opening and closing tags. Most

of the time you will see php embedded in HTML documents, as in this example.

<p>This is going to be ignored.</p>

<?php echo 'While this is going to be parsed.'; ?>

<p>This will also be ignored.</p>

 There are four different pairs of opening and closing tags, which can be used in

php.

 <?php ?>

 <script language="php"> </script>

 <? ?> (Short Tag) “short_open_tag = On”

 <% %> (ASP Style Tag) “asp_tags = on”

 Two of those, <?php ?> and <script language="php"> </script>, are always

available. The other two are short tags and ASP style tags, and can be turned on

and off from the php.ini configuration file.

 For example :

<?php echo 'Welcome To RPBC'; ?>

<script language="php">
 echo 'Welcome To RPBC';
</script>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 3

 Some important things to know when scripting with PHP.

 PHP is Case Sensitive

 PHP is case sensitive - therefore watch your capitalization closely when you

create or call variables, objects and functions. For example variable $A and $a

both are different.

 White Space

 PHP ignores extra spaces. You can add white space to your script to make it

more readable. The following lines are equivalent:

$name="Anil"

$name = "Anil"

 Insert Special Characters

 You can also insert special characters with a backslash:

 echo " \"Happy Birthday\"";
output:

"Happy Birthday"
 Comments

 In PHP, we use // (C style comment) or # (Shell Style Comment) to make a

single-line comment And /* and */ to make a large comment block.

 For Example:

// This is a C style comment
This is a Shell style comment
/*

This is a comment block
*/

 Ending Statements With a Semicolon

 In PHP Each statement terminate with semicolon but semicolon is optional for

last statement of php block.

 For Example:

<?php

 echo “Hello
”;

 echo “How Are You
”;

 echo “I am Fine
” // semicolon is optional for last statement

?>

 Variables in PHP

 Variables in PHP are represented by a dollar sign followed by the name of the

variable.

 The variable name is case-sensitive.

 Variable naming rule is: A valid variable name starts with a letter or underscore,

followed by any number of letters, numbers, or underscores.

 For Example:

<?php
$var = 'Hello';
$Var = 'World';
echo "$var, $Var"; // outputs "Hello,World"

$4site = 'Hello'; // invalid; starts with a number
$_4site = 'Hello'; // valid; starts with an underscore

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 4

 Variable scope

 The scope of a variable is the context within which it is defined.

 For the most part all PHP variables only have a single scope.

 With in user-defined functions a local function scope is introduced. Any variable

used inside a function is by default limited to the local function scope. For

example:

<?php
$a = 1; /* global scope */

function Test()
{

$a = 100;
 echo “A:= $a”; /* reference to local scope variable */
}
Test();

 echo “
A:= $a”; /* reference to global scope variable */

?>
 output :

A:= 100
A:= 1

This can cause some problems in that people may inadvertently change a global variable.

 The global keyword

 In PHP global variables must be declared global inside a function if they are

going to be used in that function using global keyword and PHP-defined

$GLOBALS array.

 First, an example use of global:

<?php
$a = 1;
$b = 2;
function Sum()
{
 global $a, $b;
 $b = $a + $b;
}
Sum();
echo $b;

?>
 The above script will output "3". By declaring $a and $b global within the

function, all references to either variable will refer to the global version.

 A second way to access variables from the global scope is to use the special PHP-

defined $GLOBALS array.

 The previous example can be rewritten as:

<?php
$a = 1;
$b = 2;
function Sum()
{
 $GLOBALS['b'] = $GLOBALS['a'] + $GLOBALS['b'];
}
Sum();
echo $b;

 ?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 5

 Using static variables

 Another important feature of variable scope is the static variable.

 A static variable exists only in a local function scope, but it does not lose its value

when program execution leaves this scope. Consider the following example:

 Example demonstrating need for static variables

<?php
function Test()
{
 $a = 0;
 echo $a;
 $a++;
}
Test();
Test();
Test();

 ?>

 ouput :
 0 0 0

 This function is quite useless since every time it is called it sets $a to 0 and prints

"0". The $a++ which increments the variable serves no purpose since as soon as

the function exits the $a variable disappears.

 To make a useful counting function which will not lose track of the current count,

the $a variable is declared static:

 Example use of static variables

<?php
function Test()
{
 static $a = 0;
 echo $a;
 $a++;
}
Test();
Test();
Test();

 ?>
ouput :

 0 1 2

 Now, every time the Test() function is called it will print the value of $a and

increment it.

 Declaring static variables

<?php
function foo()
{
 static $int = 0; // correct
 static $int = 1+2; // wrong (as it is an expression)
 static $int = sqrt(121); // wrong (as it is an expression too)

 $int++;
 echo $int;
}

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 6

 Variable variables

 Sometimes it is convenient to be able to have variable variable names.

 That is, a variable name which can be set and used dynamically.

 A variable variables takes the value of a variable and treats that as the name of a

variable.

 For Example :

<?php

$a = 'hello';

$$a = 'world'; // $hello=’world’;

echo "$a ${$a}";

echo "$a $hello";

?>

 In the above example, hello, can be used as the name of a variable by using two-

dollar signs.

 At this point two variables have been defined and stored in the PHP symbol tree:

$a with contents "hello" and $hello with contents "world".

 Here both echo statement produce same output : hello world

 Variables from outside PHP (HTML Forms GET and POST)

 When a form is submitted to a PHP script, the information from that form is

automatically made available to the script.

 There are many ways to access this information here explain Get & Post method

of Form Object.

 GET Method:
 The GET method passes arguments from in page to the next page as a part of the

URL (Uniform Resource Locator) Query String.

 When used for form handling, GET appends the indicated variable name and

value to the URL designated in the ACTION attribute with a question mark

separator.

 Each item submitted via GET method is accessed in the handler via the $_GET

array.

Example:

<html>
<body>
<form action="welcome.php" method="GET">

Enter your name: <input type="text" name="name" />
Enter your age: <input type="text" name="age" />
<input type="submit"value=”OK” />

</form>
</body>
</html>

 URL : http://localhost/welcome.php?name=Anil&age=22&submit=OK

 The "welcome.php" file looks like this:

<html>
<body>

Welcome <?php echo $_GET["name"]; ?>.

You are <?php echo $_GET["age"]; ?> years old!

</body>
</html>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 7

 OUTPUT:

Welcome Anil.
You are 22 years old!

 Advantage Of GET Method:

 It construct an actual new and differentiable URL query string so user can

bookmark this page.

 Disadvantages Of GET Method:

 It is not suitable for login form because username & password fully visible

onscreen.

 Every GET submission is recorded in the web server log, data set included.

 The length of URL is limited so limited data pass using GET method.

(Query string to be limited 255 characters)

 POST Method:

 POST method is the preferred method of form submission.

 The form data set is included in the body of the form when it is forwarded to the

processing agent (web server).

 No visible change to the URL will result according to the different data submitted.

 Each item submitted via POST method is accessed in the handler via the $_POST

array.

 Advantages Of POST method:

 It is more secure then GET because user entered information is never visible

in the URL.

 There is a much larger limit on the amount of data that can be passed (a

couple of kilobytes).

 Disadvantages Of POST method:

 The result at a given moment cannot be book marked.

 The result should be expired by the browser, so that an error will result if the

user employs the Back button to revisit the page.

 This method can be incompatible with certain firewall setups.

Example :

 In Above example: set form tag method POST instead of GET

And in welcome.php file replace $_GET with $_POST.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 8

 PHP Operators

There are three types of operators.

 Firstly there is the unary operator which operates on only one value, for example !

(the negation operator) or ++ (the increment operator).

 The second group is termed binary operators; this group contains most of the

operators that PHP supports. For example logical, conditional operator etc…

 The third group is the ternary operator: ? : It should be used to select between

two expressions depending on a third one.

 Arithmetic Operators

Example Name Result

-$a Negation Opposite of $a.

$a + $b Addition Sum of $a and $b.

$a - $b Subtraction Difference of $a and $b.

$a * $b Multiplication Product of $a and $b.

$a / $b Division Quotient of $a and $b.

$a % $b Modulus Remainder of $a divided by $b.

Note:

 The division operator ("/") returns a float value anytime, even if the two

operands are integers (or strings that get converted to integers).

 Remainder $a % $b is negative for negative $a.

 Increment/decrement Operators

Example Name Effect

++$a Pre-increment Increments $a by one, then returns $a.
$a++ Post-increment Returns $a, then increments $a by one.
--$a Pre-decrement Decrements $a by one, then returns $a.
$a-- Post-decrement Returns $a, then decrements $a by one.

 Assignment Operators

Operator Example Is The Same As

= $x=$y $x=$y

+= $x += $y $x = $x + $y

-= $x -= $y $x= $x - $y

*= $x *= $y $x=$x * $y

/= $x /= $y $x=$x / $y

%= $x%=$y $x=$x % $y

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 9

 Comparison Operators

Example Name Result

$a == $b Equal TRUE if $a is equal to $b.

$a === $b Identical TRUE if $a is equal to $b, and they are of the same type.
(introduced in PHP 4)

$a != $b Not equal TRUE if $a is not equal to $b.

$a <> $b Not equal TRUE if $a is not equal to $b.

$a !== $b Not identical TRUE if $a is not equal to $b, or they are not of the same
type. (introduced in PHP 4)

$a < $b Less than TRUE if $a is strictly less than $b.

$a > $b Greater than TRUE if $a is strictly greater than $b.

$a <= $b Less than or
equal to TRUE if $a is less than or equal to $b.

$a >= $b Greater than or
equal to TRUE if $a is greater than or equal to $b.

 Logical Operators

Example Name Result

$a and $b And TRUE if both $a and $b are TRUE.

$a or $b Or TRUE if either $a or $b is TRUE.

$a xor $b Xor TRUE if either $a or $b is TRUE, but not both.

! $a Not TRUE if $a is not TRUE.

$a && $b And TRUE if both $a and $b are TRUE.

$a || $b Or TRUE if either $a or $b is TRUE.

 Ternary Operator
 One especial useful operator in ternary conditional operator

 Its job is to takes three expression and use truth value of the first expression to

decide which of the other two expression to evaluate and return.

Syntax:

Test-expression ? yes-expression : no-expression

 The value of this expression is the result of yes-expression if test-expression is

true; otherwise no-expression.

 String Operators
 There are two string operators.

 The first is the concatenation operator ('.'), which returns the concatenation of its

right and left arguments.

 The second is the concatenating assignment operator ('.='), which appends the

argument on the right side to the argument on the left side.

<?php
$a = "Hello ";
$b = $a . "World!"; // now $b contains "Hello World!"

$a = "Hello ";
$a .= "World!"; // now $a contains "Hello World!"

 ?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 10

 Control Structures:

 if Statment
 The if construct is one of the most important features of many languages, PHP

included. It allows for conditional execution of code fragments.

 PHP features an if structure that is similar to that of C:

if (expression)
{
 statements
}

 As described in the section about expressions, expression is evaluated to its

Boolean value.

 If expression evaluates to TRUE, PHP will execute statements, and if it evaluates

to FALSE - it'll ignore it.

 The following example would display a is bigger than b if $a is bigger than $b:

<?php

if ($a > $b)

{

 echo "a is bigger than b";

}

?>

 If…else
 Often you'd want to execute a statement if a certain condition is met, and a

different statement if the condition is not met. This is what else is for.

 else extends an if statement to execute a statement in case the expression in the if

statement evaluates to FALSE.

if (expression)
{
 block-1
}
else
{
 block-2
}

 If expression evaluates to TRUE then block –1 is executed Else block-2 is

executed.

 For example, the following code would display a is bigger than b if $a is bigger

than $b, and a is NOT bigger than b otherwise:

<?php
if ($a > $b)
{ echo "a is bigger than b"; }
else
{ echo "a is NOT bigger than b"; }

?>

 Elseif

 elseif, as its name suggests, is a combination of if and else.

 Like else, it extends an if statement to execute a different statement in case the

original if expression evaluates to FALSE. However, unlike else, it will execute

that alternative expression only if the elseif conditional expression evaluates to

TRUE.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 11

 For example, the following code would display a is bigger than b, a equal to b or a

is smaller than b:

<?php
if ($a > $b)
{
 echo "a is bigger than b";
} elseif ($a == $b)
{
 echo "a is equal to b";
}
else
{

echo "a is smaller than b";
}

?>

 switch

 The switch statement is similar to a series of IF statements on the same

expression.

 In many occasions, you may want to compare the same variable (or expression)

with many different values, and execute a different piece of code depending on

which value it equals to. This is exactly what the switch statement is for.

 Syntax:

switch (expression)
{

case label1:
 code to be executed if expression = label1;
 break;
case label2:
 code to be executed if expression = label2;
 break;
default:
 code to be executed
 if expression is different
 from both label1 and label2;

}

 Example:

<?php
switch ($x)
{

case 1:
 echo "Number 1";
 break;
case 2:
 echo "Number 2";
 break;
case 3:
 echo "Number 3";
 break;
default:
 echo "No number between 1 and 3";

}
?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 12

 while

 while loops are the simplest type of loop in PHP. They behave just like their C

counterparts.

 The basic form of a while statement is:

while (expr)

{

 statements

}

 The meaning of a while statement is simple. It tells PHP to execute the nested

statement(s) repeatedly, as long as the while expression evaluates to TRUE.

 The value of the expression is checked each time at the beginning of the loop, so

even if this value changes during the execution of the nested statement(s),

execution will not stop until the end of the iteration (each time PHP runs the

statements in the loop is one iteration).

 Sometimes, if the while expression evaluates to FALSE from the very beginning,

the nested statement(s) won't even be run once.

 Example:

<?php
$i = 1;
while ($i <= 5)
{
 echo $i++;
}

 ?>

 do-while

 do-while loops are very similar to while loops, except the truth expression is

checked at the end of each iteration instead of in the beginning.

 The main difference from regular while loops is that the first iteration of a do-

while loop is guaranteed to run (the truth expression is only checked at the end of

the iteration), whereas it's may not necessarily run with a regular while loop (the

truth expression is checked at the beginning of each iteration, if it evaluates to

FALSE right from the beginning, the loop execution would end immediately).

 The basic form of a while statement is:

do

{

 statements

} while (expr);

 Example:

<?php
$i = 5;
do
{
 echo $i;
} while ($i >0);

?>
 The above loop would run one time exactly, since after the first iteration, when

truth expression is checked, it evaluates to FALSE ($i is not bigger than 0) and

the loop execution ends.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 13

 for

 for loops are the most complex loops in PHP.

 They behave like their C counterparts. The syntax of a for loop is:

for (expr1; expr2; expr3)

{

 statements

}

 The first expression (expr1) is evaluated (executed) once unconditionally at the

beginning of the loop.

 In the beginning of each iteration, expr2 is evaluated. If it evaluates to TRUE, the

loop continues and the nested statement(s) are executed. If it evaluates to FALSE,

the execution of the loop ends.

 At the end of each iteration, expr3 is evaluated (executed).

 Each of the expressions can be empty. expr2 being empty means the loop should

be run indefinitely (PHP implicitly considers it as TRUE, like C). This may not be

as useless as you might think, since often you'd want to end the loop using a

conditional break statement instead of using the for truth expression.

 Consider the following examples. All of them display numbers from 1 to 10:

<?php
/* example 1 */

for ($i = 1; $i <= 10; $i++)
{
 echo $i;
}

/* example 2 */

for ($i = 1; ; $i++) {
 if ($i > 10)

{
 break;
 }
 echo $i;
}

/* example 3 */

$i = 1;
for (; ;)
{
 if ($i > 10) { break; }
 echo $i;
 $i++;
}

/* example 4 */

for ($i = 1; $i <= 10; print $i, $i++);

?>
 Of course, the first example appears to be the nicest one (or perhaps the fourth),

but you may find that being able to use empty expressions in for loops comes in

handy in many occasions.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 14

 foreach

 Loops over the array given by the parameter.

 On each loop, the value of the current element is assigned to $value and the array

pointer is advanced by one - so on the next loop, you'll be looking at the next

element.

 Syntax

foreach (array as value)
{
 code to be executed;
}

 Example

The following example demonstrates a loop that will print the values of the given

array:

<?php
$arr=array("one", "two", "three");
foreach ($arr as $value)
{

echo "Value: " . $value . "
";
}

?>
 break

 break ends execution of the current for, foreach, while, do-while or switch

structure.

 break accepts an optional numeric argument which tells it how many nested

enclosing structures are to be broken out of.

 For Example :

<?php

$i = 0;

while (++$i)

{

 switch ($i)

 {

 case 5:

 echo "At 5
\n";

 break 1; /* Exit only the switch. */

 case 10:

 echo "At 10; quitting
\n";

 break 2; /* Exit the switch and the while. */

 default:

 break;

}

}

?>

 continue
 continue is used within looping structures to skip the rest of the current loop

iteration and continue execution at the condition evaluation and then the

beginning of the next iteration.

 continue accepts an optional numeric argument which tells it how many levels of

enclosing loops it should skip to the end of.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 15

 For Example

<?php

 for ($i = 0; $i < 5; ++$i) {

 if ($i == 2)

 continue;

 echo " $i";

 }

?>

 output :

 0 1 3 4

 Alternative syntax for control structures
 PHP offers an alternative syntax for some of its control structures; namely, if,

while, for, foreach, and switch. In each case, the basic form of the alternate syntax

is to change the opening brace to a colon (:) and the closing brace to endif;,

endwhile;, endfor;, endforeach;, or endswitch;, respectively.

 The alternative syntax applies to else and elseif. The following is an if structure

with elseif and else in the alternative format:

<?php
if ($a == 5):

 echo "a equals 5";
 elseif ($a == 6):
 echo "a equals 6";
 else:
 echo "a is neither 5 nor 6";
 endif;
?>

 Arrays
 An array in PHP is actually an ordered map.

 A map is a type that maps values to keys.

 This type is optimized in several ways; so you can use it as a real array, or a list

(vector), hash table (which is an implementation of a map), dictionary, collection,

stack, queue and probably more. Because you can have another PHP array as a

value, you can also quite easily simulate trees.

 Specifying with array()

 An array can be created by the array() language-construct. It takes a certain

number of comma-separated key => value pairs.

array([key =>] value
 , ...
)

 key may be an integer or string

 value may be any value

 For Example:

<?php

$arr = array("foo" => "bar", 12 => true);

echo $arr["foo"]; // bar
echo $arr[12]; // 1

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 16

 A key may be either an integer or a string. If a key is the standard representation

of an integer, it will be interpreted as such (i.e. "8" will be interpreted as 8, while

"08" will be interpreted as "08"). Floats in key are truncated to integer. There are

no different indexed and associative array types in PHP; there is only one array

type, which can both contain integer and string indices.

 A value can be of any PHP type.

<?php
$arr = array("somearray" => array(6 => 5, 13 => 9, "a" => 42));

echo $arr["somearray"][6]; // 5
echo $arr["somearray"][13]; // 9
echo $arr["somearray"]["a"]; // 42

?>
 If you do not specify a key for a given value, then the maximum of the integer

indices is taken, and the new key will be that maximum value + 1. If you specify a

key that already has a value assigned to it, that value will be overwritten.

<?php
// This array is the same as ...
array(5 => 43, 32, 56, "b" => 12);

// ...this array
array(5 => 43, 6 => 32, 7 => 56, "b" => 12);

?>

 Using TRUE, as a key will evaluate to integer 1 as key. Using FALSE as a key

will evaluate to integer 0 as key. Using NULL as a key will evaluate to the empty

string. Using the empty string, as key will create (or overwrite) a key with the

empty string and its value it is not the same as using empty brackets.

 Creating/modifying with square-bracket syntax

 You can also modify an existing array by explicitly setting values in it.

 This is done by assigning values to the array while specifying the key in brackets.

You can also omit the key, add an empty pair of brackets ("[]") to the variable

name in that case.

$arr[key] = value;
$arr[] = value;

 key may be an integer or string. value may be any value

 If $arr doesn't exist yet, it will be created. So this is also an alternative way to

specify an array.

 To change a certain value, just assign a new value to an element specified with its

key.

 If you want to remove a key/value pair, you need to unset() it.

 For Example :

<?php
$arr = array(5 => 1, 12 => 2);
$arr[] = 56; // This is the same as $arr[13] = 56;
$arr["x"] = 42; // This adds a new element to the array with key "x"

unset($arr[5]); // This removes the element from the array

unset($arr); // This deletes the whole array

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 17

 If you provide the brackets with no key specified, then the maximum of the

existing integer indices is taken, and the new key will be that maximum value + 1.

If no integer indices exist yet, the key will be 0 (zero). If you specify a key that

already has a value assigned to it, that value will be overwritten.

 Note that the maximum integer key used for this need not currently exist in the

array. It simply must have existed in the array at some time since the last time the

array was re-indexed.

 The following example illustrates:

<?php
$array = array(1, 2, 3, 4, 5); // Create a simple array.
print_r($array);
echo “
”;
// Now delete every item, but leave the array itself intact:
foreach ($array as $i => $value)
{
 unset($array[$i]);
}
print_r($array);
echo “
”;
// Append an item (the new key is 5, instead of 0 as you might expect).
$array[] = 6;
print_r($array);
echo “
”;
// Re-index:
$array = array_values($array);
$array[] = 7;
print_r($array);

?>
output:

Array([0] => 1 [1] => 2 [2] => 3 [3] => 4 [4] => 5)
Array()
Array([5] => 6)
Array([0] => 6 [1] => 7)

 User Define Functions

User-defined functions are not requirement in PHP. You can produce
interesting and useful Web sites simply with the basic language constructs and the
large body of built-in functions. If you find that your code files are getting longer,
harder to understand, and more difficult to manage, however, it may be indication that
you should start wrapping some of your code up into functions.

What is function?

A function us a way of wrapping up a chunk of code and giving that chunk a
name, so that you can use that chunk later in just one line of code. Functions are most
useful when you will be using the code in more than one place, but they can helpful
even in one-use situation, because they can make your code much more readable,

Function definition syntax

 Function function-name ($argument-1 ,$argument-2 ..)
 {
 statement -1;
 statement – 2;
 …..
 }

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 18

function definition have four parts:
 The special word function
 The name that you want to give your function
 The function’s parameter list-dollar-sign variable separate by commas
 The function body – a brace-enclosed set of statements

Function naming rule : A valid function name starts with a letter or underscore,

followed by any number of letters, numbers, or underscores.

Example :

<?php
 echo "WelCome To AIT";

 function sum()
 {
 $a=10;
 $b=20;

 $ans=$a+$b;
 echo "
Sum := $ans";
 }

 sum();
?>

 Function arguments

 Information may be passed to functions via the argument list, which is a comma-

delimited list of expressions.

 PHP supports passing arguments by value (the default), passing by reference, and

default argument values. Variable-length argument lists are supported only in

PHP 4 and later;

Example:

<?php

 echo "WelCome To AIT";

 function sum($a,$b)

 {

 $ans=$a+$b;

 echo "
Sum := $ans";

}

 sum(10,100);

?>

 Making arguments be passed by reference
 By default, function arguments are passed by value (so that if you change the

value of the argument within the function, it does not get changed outside of the

function). If you wish to allow a function to modify its arguments, you must pass

them by reference.

 If you want an argument to a function to always be passed by reference, you can

prepend an ampersand (&) to the argument name in the function definition:

<?php

function add_some_extra(&$string)
{
 $string .= 'and something extra.';
}

$str = 'This is a string, ';
add_some_extra($str);
echo $str; // outputs 'This is a string, and something extra.'

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 19

 Default argument values

 A function may define C++ style default values for scalar arguments. You can

write your function to have default values. For example you can define an

argument as having a default value, which the parameters for that arguments will

adopt when the function call, provided you don’t pass a value in for that

argument.

 But you must define any arguments with default value to the right of any

arguments without default value.

 For Example :

<?php

function makecoffee($type = "cappuccino")
{
 return "Making a cup of $type.\n";
}
echo makecoffee();
echo makecoffee("espresso");

?>

output

Making a cup of cappuccino.
Making a cup of espresso.

 default arguments function declaration

function make($name = "anil", $age) // Incorrect default arguments
function make($age ,$name = "anil") // Correct default arguments

 Variable-length argument lists

 PHP 4 and above has support for variable-length argument lists in user-defined

functions. This is really quite easy, using the func_num_args(), func_get_arg(),

and func_get_args() functions.

 No special syntax is required, and argument lists may still be explicitly provided

with function definitions and will behave as normal.

 func_num_args
 func_num_args -- Returns the number of arguments passed to the function

Syntax:

int func_num_args (void)

 Returns the number of arguments passed into the current user-defined

function.

 func_num_args() will generate a warning if called from outside of a user-

defined function.

 This function cannot be used directly as a function parameter. Instead, its

result may be assigned to a variable, which can then be passed to the function.

 Because this function depends on the current scope to determine parameter

details, it cannot be used as a function parameter. If you must pass this value,

assign the results to a variable, and pass the variable.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 20

For Example:

<?php
function foo()
{
 $numargs = func_num_args();
 echo "Number of arguments: $numargs\n";
}

foo(1, 2, 3); // Prints 'Number of arguments: 3'

?>

 func_get_arg
 func_get_arg -- Return an item from the argument list

Syntax:

mixed func_get_arg (int arg_num)

 Returns the argument which is at the arg_num'th offset into a user-defined

function's argument list.

 Function arguments are counted starting from zero.

 func_get_arg() will generate a warning if called from outside of a function

definition. This function cannot be used directly as a function parameter.

Instead, its result may be assigned to a variable, which can then be passed to

the function.

 If arg_num is greater than the number of arguments actually passed, a

warning will be generated and func_get_arg() will return FALSE.

<?php

function foo()
{
 $numargs = func_num_args();
 echo "Number of arguments: $numargs
\n";
 if ($numargs >= 2)
 {
 echo "Second argument is: " . func_get_arg(1) . "
\n";
 }
}

foo (1, 2, 3);

?>

 func_get_args
 func_get_args -- Returns an array comprising a function's argument list

Syntax

array func_get_args (void)

 Returns an array in which each element is a copy of the corresponding

member of the current user-defined function's argument list.

 func_get_args() will generate a warning if called from outside of a function

definition. This function cannot be used directly as a function parameter.

Instead, its result may be assigned to a variable, which can then be passed to

the function.

 This function returns a copy of the passed arguments only, and does not

account for default (non-passed) arguments.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 21

For Example :
<?php

function foo()
{
 $numargs = func_num_args();
 echo "Number of arguments: $numargs
\n";
 if ($numargs >= 2) {
 echo "Second argument is: " . func_get_arg(1) . "
”;
 }
 $arg_list = func_get_args();
 for ($i = 0; $i < $numargs; $i++) {
 echo "Argument $i is: " . $arg_list[$i] . "
\n";
 }
}

foo(1, 2, 3);

?>

 Returning values
 Values are returned by using the optional return statement. Any type may be

returned, including lists and objects.

 This causes the function to end its execution immediately and pass control back to

the line from which it was called.

<?php
function square($num)
{
 return $num * $num;
}
echo square(4); // outputs '16'.

?>

 You can't return multiple values from a function, but similar results can be

obtained by returning a list.

 Returning an array to get multiple values

<?php

function small_numbers()
{
 return array (0, 1, 2);
}
list ($zero, $one, $two) = small_numbers();

?>

 Variable functions

 PHP supports the concept of variable functions.

 This means that if a variable name has parentheses appended to it, PHP will look

for a function with the same name as whatever the variable evaluates to, and will

attempt to execute it. Among other things, this can be used to implement

callbacks, function tables, and so forth.

 Variable functions won't work with language constructs such as echo(), print(),

unset(), isset(), empty(), include(), require() and the like.

 You need to use your own wrapper function to utilize any of these constructs as

variable functions.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 22

Variable function example

<?php
function foo()
{
 echo "In foo()
\n";
}

function bar($arg = '')
{
 echo "In bar(); argument was '$arg'.
\n";
}

// This is a wrapper function around echo
function echoit($string)
{
 echo $string;
}

$func = 'foo';
$func(); // This calls foo()

$func = 'bar';
$func('test'); // This calls bar()

$func = 'echoit';
$func('test'); // This calls echoit()

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 23

Variable Handling Functions

 gettype

 gettype -- Get the type of a variable

Syntax:

string gettype (mixed var)

 Possibles values for the returned string are: "boolean" (since PHP 4),"integer",

"double" (for historical reasons "double" is returned in case of a float, and not

simply "float"),"string", "array", "object", "resource" (since PHP 4), "NULL"

(since PHP 4), "user function" (PHP 3 only, deprecated), "unknown type"

 settype
 settype -- Set the type of a variable

Syntax:

bool settype (mixed &var, string type)

 Possibles values for the returned string are: "boolean" (since PHP 4),"integer",

"double" (for historical reasons "double" is returned in case of a float, and not

simply "float"),"string", "array", "object", "resource" (since PHP 4), "NULL"

(since PHP 4), "user function" (PHP 3 only, deprecated), "unknown type"

 Returns TRUE on success or FALSE on failure.

Example:
<?php

$foo = "5bar"; // string
$bar = true; // boolean
settype($foo, "integer"); // $foo is now 5 (integer)
settype($bar, "string"); // $bar is now "1" (string)

?>

 strval

 strval -- Get string value of a variable

Syntax:

string strval (mixed var)

 Returns the string value of var.

 var may be any scalar type. You cannot use strval() on arrays or objects.

 floatval

 floatval -- Get float value of a variable

 Syntax:

float floatval (mixed var)

 intval
 intval -- Get the integer value of a variable

Syntax:

int intval (mixed var [, int base])

Example:
<?php
 $var = '122.34343The';
 echo "Var:=". $var;
 echo "
String Value:". strval($var);
 echo "
Integer Value:". intval($var);
 echo "
Float Value:". floatval($var);
?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 24

 is_string , is_int , is_float , is_null , is_bool , is_array

 Finds whether a variable is a string, integer, float, null, boolean and array

respectively.

 Return value is Boolean.

Syntax:

bool abovefunction (mixed var)

 isset
 isset -- Determine whether a variable is set

Syntax:

bool isset (mixed var [, mixed var [, ...]])

 Returns TRUE if var exists; FALSE otherwise.

 unset
 unset -- Unset a given variable

Synatx:

void unset (mixed var [, mixed var [, mixed ...]])

 unset() destroys the specified variables.

Example:

 <?php

$a = "test";

$b = "anothertest";

var_dump(isset($a)); // TRUE

var_dump(isset($a, $b)); // TRUE

unset ($a);

var_dump(isset($a)); // FALSE

var_dump(isset($a, $b)); // FALSE

$foo = NULL;

var_dump(isset($foo)); // FALSE

?>

 print_r
 print_r -- Prints human-readable information about a variable

Syntax:

bool print_r (mixed expression [, bool return])

 print_r() displays information about a variable in a way that's readable by humans.

If given a string, integer or float, the value itself will be printed.

 If given an array, values will be presented in a format that shows keys and

elements.

Example:

<?php
$a = array ('a' => 'apple', 'c' => array ('x'));

 print_r ($a);
?>

 Output:
Array
(
 [a] => apple
 [c] => Array
 (
 [0] => x
)
)

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 25

 Strings

 A string is series of characters.

 In PHP, a character is the same as a byte, that is, there are exactly 256 different

characters possible.

 This also implies that PHP has no native support of Unicode.

 It is no problem for a string to become very large. There is no practical bound to

the size of strings imposed by PHP, so there is no reason at all to worry about

long strings.

 A string literal can be specified in three different ways.

 single quoted

 double quoted

 heredoc syntax

 Single quoted
 The easiest way to specify a simple string is to enclose it in single quotes (the

character ').

 To specify a literal single quote, you will need to escape it with a backslash

(\), like in many other languages.

 If a backslash needs to occur before a single quote or at the end of the string,

you need to double it.

 Note that if you try to escape any other character, the backslash will also be

printed! So usually there is no need to escape the backslash itself.

 For Example:

<?php
echo 'this is a simple string';

// Outputs: Arnold once said: "I'll be back"
echo 'Arnold once said: "I\'ll be back"';

// Outputs: You deleted C:*.*?
echo 'You deleted C:*.*?';

// Outputs: You deleted C:*.*?
echo 'You deleted C:*.*?';

// Outputs: This will not expand: \n a newline
echo 'This will not expand: \n a newline';

// Outputs: Variables do not $expand $either
echo 'Variables do not $expand $either';

?>
 Double quoted
 If the string is enclosed in double-quotes (").

 Heredoc
 Another way to delimit strings is by using heredoc syntax ("<<<"). One

should provide an identifier after <<<, then the string, and then the same

identifier to close the quotation.

 The closing identifier must begin in the first column of the line. Also, the

identifier used must follow the same naming rules as any other label in PHP: it

must contain only alphanumeric characters and underscores, and must start

with a non-digit character or underscore.

 It especially useful in creating pages that contains HTML forms.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 26

 For Example :

<?php

 $sing='Welcome To RPBC \n';

 $db="Welcome To RPBC \n";

$str = <<<EOD

Example of string

spanning multiple lines

using heredoc syntax.

EOD;

 echo $db;

 echo $sing;

 echo $str;

?>

 Escaped characters

sequence meaning

\n linefeed (LF or 0x0A (10) in ASCII)

\r carriage return (CR or 0x0D (13) in ASCII)

\t horizontal tab (HT or 0x09 (9) in ASCII)

\\ backslash

\$ dollar sign

\" double-quote

\[0-7]{1,3} the sequence of characters matching the regular
expression is a character in octal notation

\x[0-9A-Fa-f]
{1,2}

the sequence of characters matching the regular
expression is a character in hexadecimal notation

String Functions

 chr

 Returns a one-character string containing the character specified by ascii.

Syntax :

string chr (int ascii)

Example :

 echo chr(65); // A

 echo chr(97); // a

 ord
 Returns the ASCII value of the first character of string.

 This function complements chr().

Syntax :

int ord (string string)

Example :

 echo ord("A"); //65

 echo ord("anil"); //97

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 27

 strtolower
 Returns string with all alphabetic characters converted to lowercase.

Syntax :

string strtolower (string str)

Example :

 echo strtolower("WelCome To RPBC"); //welcome to rpbc

 strtoupper
 Returns string with all alphabetic characters converted to uppercase.

Syntax :

string strtoupper (string str)

Example :

 echo strtoupper("WelCome To RPBC"); //WELCOME TO RPBC

 ucfirst
 ucfirst -- Make a string's first character uppercase

Syntax :

string ucfirst (string str)

 Returns a string with the first character of str capitalized, if that character is

alphabetic.

Example :

 echo ucfirst("welCome To RPBC"); // WelCome To RPBC

 ucwords
 ucwords -- Uppercase the first character of each word in a string

Syntax :

string ucwords (string str)

 Returns a string with the first character of each word in str capitalized, if that

character is alphabetic.

 The definition of a word is any string of characters that is immediately after a

whitespace (These are: space, form-feed, newline, carriage return, horizontal tab,

and vertical tab).

Example :

 echo ucwords("welCome tO RPBC"); // WelCome TO RPBC

 strlen
 Returns the length of the given string.

Syntax:

int strlen (string string)

Example :

 echo strlen("RPBC"); // 4

 ltrim

 ltrim -- Strip whitespace (or other characters) from the beginning of a string

Syntax:

string ltrim (string str [, string charlist])

 This function returns a string with whitespace stripped from the beginning of str.

Without the second parameter, ltrim() will strip these characters:

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 28

 " " (ASCII 32 (0x20)), an ordinary space.
 "\t" (ASCII 9 (0x09)), a tab.
 "\n" (ASCII 10 (0x0A)), a new line (line feed).
 "\r" (ASCII 13 (0x0D)), a carriage return.
 "\0" (ASCII 0 (0x00)), the NUL-byte.
 "\x0B" (ASCII 11 (0x0B)), a vertical tab.

 You can also specify the characters you want to strip, by means of the charlist

parameter. Simply list all characters that you want to be stripped. With .. you can

specify a range of characters.

Example :

$str = " ...Welcome..";

 echo ($str."Length :=". strlen($str)."
"); // 14

 $str=ltrim($str);

 echo ($str."Length :=". strlen($str)."
"); //12

 $str=ltrim($str," .");

 echo ($str."Length :=". strlen($str)); //9

 rtrim
 rtrim is same as ltrim function but rtrim -- Strip whitespace (or other characters)

from the end of a string

Syntax:

string rtrim (string str [, string charlist])

Example :

$str = "...Welcome.. ";

 echo ($str."Length :=". strlen($str)."
"); // 14

 $str=rtrim($str);

 echo ($str."Length :=". strlen($str)."
"); //12

 $str=rtrim($str," .");

 echo ($str."Length :=". strlen($str)); //10

 trim
 trim is same as ltrim & rtrim function but trim -- Strip whitespace (or other

characters) from the beginning & end of a string

Syntax:

string rtrim (string str [, string charlist])

Example :

$str = " ...Welcome.. ";

 echo ($str."Length :=". strlen($str)."
"); // 16

 $str=trim($str);

 echo ($str."Length :=". strlen($str)."
"); // 12

 $str=trim($str," .");

 echo ($str."Length :=". strlen($str)); // 7

 substr
 substr -- Return part of a string

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 29

Syntax:

string substr (string string, int start [, int length])

 substr() returns the portion of string specified by the start and length parameters.

 If start is non-negative, the returned string will start at the start'th position in

string, counting from zero.

 For instance, in the string 'abcdef', the character at position 0 is 'a', the character at

position 2 is 'c', and so forth.

Example :

echo substr('abcdef', 1); // bcdef

echo substr('abcdef', 1, 3); // bcd

echo substr('abcdef', 0, 4); // abcd

// Accessing single characters in a string

can also be achived using "curly braces"

$string = 'abcdef';

echo $string{0}; // a

echo $string{3}; // d

 If start is negative, the returned string will start at the start'th character from the

end of string.

$rest = substr("abcdef", -1); // returns "f"

$rest = substr("abcdef", -2); // returns "ef"

$rest = substr("abcdef", -3, 1); // returns "d"

 If length is given and is positive, the string returned will contain at most length

characters beginning from start (depending on the length of string). If string is

less than or equal to start characters long, FALSE will be returned.

 If length is given and is negative, then that many characters will be omitted from

the end of string (after the start position has been calculated when a start is

negative). If start denotes a position beyond this truncation, an empty string will

be returned.

$rest = substr("abcdef", 0, -1); // returns "abcde"

$rest = substr("abcdef", 2, -1); // returns "cde"

$rest = substr("abcdef", 4, -4); // returns ""

$rest = substr("abcdef", -3, -1); // returns "de"

 strcmp

 strcmp -- Binary safe string comparison

Syntax:

int strcmp (string str1, string str2)

 Returns < 0 if str1 is less than str2; > 0 if str1 is greater than str2, and 0 if they

are equal.

 This comparison is case sensitive.

Example:

 echo strcmp(“Hello”,”hello”); // -1

 strcasecmp
 strcasecmp -- Binary safe case-insensitive string comparison

Syntax:

int strcasecmp (string str1, string str2)

 Returns < 0 if str1 is less than str2; > 0 if str1 is greater than str2, and 0 if they

are equal.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 30

Example:

$var1 = "Hello";

$var2 = "hello";

if (strcasecmp($var1, $var2) == 0) {

 echo '$var1 is equal to $var2 in a case-insensitive string comparison';

}

 strncasecmp
 strncasecmp -- Binary safe case-insensitive string comparison of the first n

characters

Syntax:

int strncasecmp (string str1, string str2, int len)

 This function is similar to strcasecmp(), with the difference that you can specify

the (upper limit of the) number of characters (len) from each string to be used in

the comparison.

 Returns < 0 if str1 is less than str2; > 0 if str1 is greater than str2, and 0 if they

are equal.

 strpos
 strpos -- Find position of first occurrence of a string

Syntax:

int strpos (string haystack, mixed needle [, int offset])

 Returns the numeric position of the first occurrence of needle in the haystack

string. Unlike the strrpos(), this function can take a full string as the needle

parameter and the entire string will be used.

 If needle is not found, strpos() will return boolean FALSE.

 The optional offset parameter allows you to specify which character in haystack to

start searching. The position returned is still relative to the beginning of haystack.

Example:

$newstring = 'abcdef abcdef';
$pos = strpos($newstring, 'a'); // $pos = 0
$pos = strpos($newstring, 'a', 1); // $pos = 7, not 0

 substr_count
 substr_count -- Count the number of substring occurrences

Syntax:

int substr_count (string haystack, string needle [, int offset [, int length]])

 substr_count() returns the number of times the needle substring occurs in the

haystack string.

 needle is case sensitive.

Parameters

 haystack : The string to search in

 needle : The substring to search for

 offset : The offset where to start counting

 length : The maximum length after the specified offset to search for the substring.

It outputs a warning if the offset plus the length is greater than the haystack

length.

 Return Values :This functions returns an integer.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 31

 Examples

<?php
$text = 'This is a test';
echo strlen($text); // 14

echo substr_count($text, 'is'); // 2

// the string is reduced to 's is a test', so it prints 1
echo substr_count($text, 'is', 3);

 ?>

 strrpos

 strrpos -- Find position of last occurrence of a char in a string

Syntax:

int strrpos (string haystack, string needle [, int offset])

 Returns the numeric position of the last occurrence of needle in the haystack

string. Note that the needle in this case can only be a single character in PHP 4. If

a string is passed as the needle, then only the first character of that string will be

used.

 If needle is not found, returns FALSE.

Example:

$newstring = 'abcdef abcdef';
$pos = strrpos($newstring, 'a'); // $pos = 7

 strstr

Syntax:

string strstr (string haystack, string needle)

 Returns part of haystack string from the first occurrence of needle to the end of

haystack.

 If needle is not found, returns FALSE.

 If needle is not a string, it is converted to an integer and applied as the ordinal

value of a character.

 This function is case-sensitive.

Example:

$email = 'user@example.com';

$domain = strstr($email, '@');

echo $domain; // prints @example.com

 stristr
 stristr -- Case-insensitive strstr()

Syntax:

string stristr (string haystack, string needle)

 Returns all of haystack from the first occurrence of needle to the end. needle and

haystack are examined in a case-insensitive manner.

 If needle is not found, returns FALSE.

 If needle is not a string, it is converted to an integer and applied as the ordinal

value of a character.

Example

$email = 'USER@EXAMPLE.com';

 echo stristr($email, 'e');

// outputs ER@EXAMPLE.com

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 32

 strrchr
 strrchr -- Find the last occurrence of a character in a string

Syntax:

string strrchr (string haystack, string needle)

 This function returns the portion of haystack which starts at the last occurrence of

needle and goes until the end of haystack.

 Returns FALSE if needle is not found.

 If needle contains more than one character, only the first is used in PHP 4. This

behavior is different from that of strchr().

 If needle is not a string, it is converted to an integer and applied as the ordinal

value of a character.

Example

echo strrchr("WelCome To RPBC",'o'); // o RPBC

 str_replace
 str_replace -- Replace all occurrences of the search string with the replacement

string

Syntax:

mixed str_replace (mixed search, mixed replace, mixed subject [, int &count])

 This function returns a string or an array with all occurrences of search in subject

replaced with the given replace value.

 Every parameter in str_replace() can be an array.

 If subject is an array, then the search and replace is performed with every entry of

subject, and the return value is an array as well.

 If search and replace are arrays, then str_replace() takes a value from each array

and uses them to do search and replace on subject.

 If replace has fewer values than search, then an empty string is used for the rest

of replacement values.

 If search is an array and replace is a string, then this replacement string is used

for every value of search.

Example:
<?php

// Provides: <body text='black'>
$bodytag = str_replace("%body%", "black", "<body text='%body%'>");

// Provides: Hll Wrld f PHP
$vowels = array("a", "e", "i", "o", "u", "A", "E", "I", "O", "U");
$onlyconsonants = str_replace($vowels, "", "Hello World of PHP");

// Provides: You should eat pizza, beer, and ice cream every day
$phrase = "You should eat fruits, vegetables, and fiber every day.";
$healthy = array("fruits", "vegetables", "fiber");
$yummy = array("pizza", "beer", "ice cream");

$newphrase = str_replace($healthy, $yummy, $phrase);

// Use of the count parameter is available as of PHP 5.0.0
$str = str_replace("ll", "", "good golly miss molly!", $count);
echo $count; // 2

?>
 str_ireplace

 str_ireplace -- Case-insensitive version of str_replace().

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 33

 substr_replace
 substr_replace -- Replace text within a portion of a string

Syntax:

mixed substr_replace (mixed string, string replacement, int start [, int length])

 substr_replace() replaces a copy of string delimited by the start and (optionally)

length parameters with the string given in replacement. The result string is

returned. If string is an array then array is returned.

 If start is positive, the replacing will begin at the start'th offset into string.

 If start is negative, the replacing will begin at the start'th character from the end

of string.

 If length is given and is positive, it represents the length of the portion of string

which is to be replaced. If it is negative, it represents the number of characters

from the end of string at which to stop replacing. If it is not given, then it will

default to strlen(string); i.e. end the replacing at the end of string.

Example:

<?php

$var = 'ABCDEFGH:/MNRPQR/';

echo "Original: $var<hr />\n";

/* These two examples replace all of $var with 'bob'. */

echo substr_replace($var, 'bob', 0) . "
\n";

echo substr_replace($var, 'bob', 0, strlen($var)) . "
\n";

/* Insert 'bob' right at the beginning of $var. */

echo substr_replace($var, 'bob', 0, 0) . "
\n";

/* These next two replace 'MNRPQR' in $var with 'bob'. */

echo substr_replace($var, 'bob', 10, -1) . "
\n";

echo substr_replace($var, 'bob', -7, -1) . "
\n";

/* Delete 'MNRPQR' from $var. */

echo substr_replace($var, '', 10, -1) . "
\n";

?>

 strrev
 strrev -- Reverse a string

Syntax:

string strrev (string string)

Example:

echo strrev("Hello world!"); // outputs "!dlrow olleH"

 strval
 strval -- Get string value of a variable

Syntax:

string strval (mixed var)

 Returns the string value of var. See the documentation on string for more

information on converting to string.

 var may be any scalar type. You cannot use strval() on arrays or objects.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 34

 addslashes
 addslashes -- Quote string with slashes

Syntax:

string addslashes (string str)

 Returns a string with backslashes before characters that need to be quoted in

database queries etc. These characters are single quote ('), double quote ("),

backslash (\) and NUL (the NULL byte).

Example:

$str = "Is your name O'reilly?";

// Outputs: Is your name O\'reilly?

echo addslashes($str);

 quotemeta

 quotemeta -- Quote meta characters

Synatx:

string quotemeta (string str)

 Returns a version of str with a backslash character (\) before every character that

is among these:

. \ + * ? [^] ($)
Example:

$str = "this characters ($, *) are very special to me \n”

// Outputs: this characters \(\$, * \) are very special to me \\n

echo addslashes($str);

 stripslashes
 stripslashes -- Un-quote string quoted with addslashes()

Syntax:

string stripslashes (string str)

 Returns a string with backslashes stripped off. (\' becomes ' and so on.) Double

backslashes (\\) are made into a single backslash (\).

Example:
$str = "Is your name O\'reilly?";
// Outputs: Is your name O'reilly?
echo stripslashes($str);

 echo

 echo -- Output one or more strings

Syntax:

void echo (string arg1 [, string ...])

 Outputs all parameters.

 echo() is not actually a function (it is a language construct), so you are not

required to use parentheses with it.

 echo() (unlike some other language constructs) does not behave like a function, so

it cannot always be used in the context of a function.

 Additionally, if you want to pass more than one parameter to echo(), the

parameters must not be enclosed within parentheses.

Example :
 echo "Hello World";

echo "This spans
multiple lines. The newlines will be
output as well";
echo "This spans\nmultiple lines. The newlines will be\noutput as well.";

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 35

 echo() also has a shortcut syntax, where you can immediately follow the opening

tag with an equals sign. This short syntax only works with the short_open_tag

configuration setting enabled.

I have <?=$foo?> foo.

 print
 print -- Output a string

Syntax:

int print (string arg)

 Outputs arg. Returns 1, always.

 print() is not actually a real function (it is a language construct) so you are not

required to use parentheses with its argument list.

Example:
print("Hello World");
print "print() also works without parentheses.";
print "This spans
multiple lines. The newlines will be
output as well";

print "This spans\nmultiple lines. The newlines will be\noutput as well.";
print "escaping characters is done \"Like this\".";

 Difference Between PRINT & ECHO

 Unlike echo, print can accept only one argument.

echo "Hello","How Are You?"; // valid

print "Hello","How Are You?"; // invalid

 Unlike echo, print return a value, which represents whether the print statement

succeeded. The value return 1 if the printing was successfully and 0 if

unsuccessfully.

 $a=print ("Hello");

 print $a; // display 1

MATH Function

 abs

 abs -- Absolute value

Syntax:

number abs (mixed number)

 Returns the absolute value of number.

 If the argument number is of type float, the return type is also float, otherwise it is

integer (as float usually has a bigger value range than integer).

Example:

$abs = abs(-4.2); // $abs = 4.2; (double/float)

$abs2 = abs(5); // $abs2 = 5; (integer)

$abs3 = abs(-5); // $abs3 = 5; (integer)

 ceil
 ceil -- Round fractions up

Syntax:

float ceil (float value)

 Returns the next highest integer value by rounding up value if necessary.

 The return value of ceil() is still of type float as the value range of float is usually

bigger than that of integer.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 36

Example:

echo ceil(4.3); // 5

echo ceil(9.999); // 10

 floor

 floor -- Round fractions down

Syntax:

float floor (float value)

 Returns the next lowest integer value by rounding down value if necessary.

 The return value of floor() is still of type float because the value range of float is

usually bigger than that of integer.

Example:

echo floor(4.3); // 4

echo floor(9.999); // 9

 round
 round -- Rounds a float

Syntax:

float round (float val [, int precision])

 Returns the rounded value of val to specified precision (number of digits after the

decimal point).

 precision can also be negative or zero (default).

Example:

echo round(3.4); // 3

echo round(3.5); // 4

echo round(3.6); // 4

echo round(3.6, 0); // 4

echo round(1.95583, 2); // 1.96

echo round(5.045, 2); // 5.05

echo round(1241757, -3); // 1242000

 fmod
 fmod -- Returns the floating point remainder (modulo) of the division of the

arguments

Syntax:

float fmod (float x, float y)

 Returns the floating point remainder of dividing the dividend (x) by the divisor

(y). The reminder (r) is defined as: x = i * y + r, for some integer i. If y is non-

zero, r has the same sign as x and a magnitude less than the magnitude of y.

Example:

$x = 5.7;

$y = 1.3;

$r = fmod($x, $y);

// $r equals 0.5, because 4 * 1.3 + 0.5 = 5.7

 min
 min -- Find lowest value

Syntax:

mixed min (number arg1, number arg2 [, number ...])

mixed min (array numbers)

 min() returns the numerically lowest of the parameter values.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 37

 If the first and only parameter is an array, min() returns the lowest value in that

array.

 If the first parameter is an integer, string or float, you need at least two parameters

and min() returns the smallest of these values.

 You can compare an unlimited number of values.

 PHP will evaluate a non-numeric string as 0, but still return the string if it's seen

as the numerically lowest value. If multiple arguments evaluate to 0, min() will

use the first one it sees (the leftmost value).

Example:
echo min(2, 3, 1, 6, 7); // 1
echo min(array(2, 4, 5)); // 2

echo min(0, 'hello'); // 0
echo min('hello', 0); // hello
echo min('hello', -1); // -1

// With multiple arrays, min compares from left to right
// so in our example: 2 == 2, but 4 < 5
$val = min(array(2, 4, 8), array(2, 5, 1)); // array(2, 4, 8)

// If both an array and non-array are given, the array is never returned as
it's considered the largest
$val = min('string', array(2, 5, 7), 42); // string
?>

 max

 max -- Find highest value

Syntax:

mixed max (number arg1, number arg2 [, number ...])

mixed max (array numbers)

 max() returns the numerically highest of the parameter values.

 If the first and only parameter is an array, max() returns the highest value in that

array.

 If the first parameter is an integer, string or float, you need at least two parameters

and max() returns the biggest of these values.

 You can compare an unlimited number of values.

 PHP will evaluate a non-numeric string as 0, but still return the string if it's seen

as the numerically highest value. If multiple arguments evaluate to 0, max() will

use the first one it sees (the leftmost value).

Example:
echo max(1, 3, 5, 6, 7); // 7
echo max(array(2, 4, 5)); // 5
echo max(0, 'hello'); // 0
echo max('hello', 0); // hello
echo max(-1, 'hello'); // hello

// With multiple arrays, max compares from left to right
// so in our example: 2 == 2, but 4 < 5
$val = max(array(2, 4, 8), array(2, 5, 7)); // array(2, 5, 7)

// If both an array and non-array are given, the array is always returned as
it's seen as the largest
$val = max('string', array(2, 5, 7), 42); // array(2, 5, 7)

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 38

 pow

 pow -- Exponential expression

Syntax:

number pow (number base, number exp)

 Returns base raised to the power of exp. If possible, this function will return an

integer.

 If the power cannot be computed, a warning will be issued, and pow() will return

FALSE.

 PHP cannot handle negative bases.

Example:
echo pow(-1, 20); // 1
echo pow(0, 0); // 1
echo pow(-1, 5.5); // error

 sqrt

 sqrt -- Square root

Syntax:

float sqrt (float arg)

 Returns the square root of arg.

Example:

echo sqrt(9); // 3
echo sqrt(10); // 3.16227766 ...

 exp

 exp -- Calculates the exponent of e (the Neperian or Natural logarithm base)

Syntax:

float exp (float arg)

 Returns e raised to the power of arg.

 'e' is the base of the natural system of logarithms, or approximately 2.718282.

Example:

echo exp(12) ; // 1.6275E+005
echo exp(5.7); // 298.87

 rand

 rand -- Generate a random integer

Syntax:

int rand ([int min, int max])

 If called without the optional min, max arguments rand() returns a pseudo-random

integer between 0 and RAND_MAX. If you want a random number between 5

and 15 (inclusive), for example, use rand (5, 15).

Example:

echo rand() ;
echo rand() ;
echo rand(5, 15);

The above example will output something similar to:
7771
22264
11

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 39

 base_convert

 base_convert -- Convert a number between arbitrary bases

Syntax:

string base_convert (string number, int frombase, int tobase)

 Returns a string containing number represented in base tobase. The base in which

number is given is specified in frombase.

 Both frombase and tobase have to be between 2 and 36, inclusive.

 Digits in numbers with a base higher than 10 will be represented with the letters

a-z, with a meaning 10, b meaning 11 and z meaning 35.

Example:
$hexadecimal = 'A37334';
echo base_convert($hexadecimal, 16, 2); // 101000110111001100110100

 bindec

 bindec -- Binary to decimal

Syntax:

number bindec (string binary_string)

 Returns the decimal equivalent of the binary number represented by the

binary_string argument.

Example:
echo bindec('110011') ; // 51
echo bindec('000110011') ; // 51

 octdec

 octdec -- Octal to decimal

 hexdec
 hexdec – Hexa-Decimal to decimal

 decbin
 decbin – Decimal to Binary

 decoct
 decoct – Decimal to Octal

 dechex
 dechex – Decimal to Hexa-Decimal

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 40

Date and Time Functions

 date

 date -- Format a local time/date

Syntax:

string date (string format [, int timestamp])

 Returns a string formatted according to the given format string using the given

integer timestamp or the current local time if no timestamp is given.

 In other words, timestamp is optional and defaults to the value of time().

 The valid range of a timestamp is typically from Fri, 13 Dec 1901 20:45:54 GMT

to Tue, 19 Jan 2038 03:14:07 GMT. (These are the dates that correspond to the

minimum and maximum values for a 32-bit signed integer).

 The following characters are recognized in the format parameter string

format
character

Description Example returned values

Day --- ---

d Day of the month, 2 digits with leading zeros 01 to 31

D A textual representation of a day, three letters Mon through Sun

j Day of the month without leading zeros 1 to 31

l
(lowercase
'L')

A full textual representation of the day of the
week

Sunday through
Saturday

N
ISO-8601 numeric representation of the day of
the week (added in PHP 5.1.0)

1 (for Monday) through
7 (for Sunday)

S
English ordinal suffix for the day of the month,
2 characters

st, nd, rd or th. Works
well with j

w Numeric representation of the day of the week
0 (for Sunday) through 6
(for Saturday)

z The day of the year (starting from 0) 0 through 365

Week --- ---

W
ISO-8601 week number of year, weeks starting
on Monday (added in PHP 4.1.0)

Example: 42 (the 42nd
week in the year)

Month --- ---

F
A full textual representation of a month, such
as January or March

January through
December

m
Numeric representation of a month, with
leading zeros

01 through 12

M
A short textual representation of a month, three
letters

Jan through Dec

n
Numeric representation of a month, without
leading zeros

1 through 12

T Number of days in the given month 28 through 31

Year --- ---

L Whether it's a leap year
1 if it is a leap year, 0
otherwise.

O

ISO-8601 year number. This has the same
value as Y, except that if the ISO week number
(W) belongs to the previous or next year, that
year is used instead. (added in PHP 5.1.0)

Examples: 1999 or 2003

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 41

format
character

Description Example returned values

Y A full numeric representation of a year, 4 digits Examples: 1999 or 2003

Y A two digit representation of a year Examples: 99 or 03

Time --- ---

A Lowercase Ante meridiem and Post meridiem am or pm

A Uppercase Ante meridiem and Post meridiem AM or PM

B Swatch Internet time 000 through 999

G
12-hour format of an hour without leading
zeros

1 through 12

G
24-hour format of an hour without leading
zeros

0 through 23

H 12-hour format of an hour with leading zeros 01 through 12

H 24-hour format of an hour with leading zeros 00 through 23

I Minutes with leading zeros 00 to 59

S Seconds, with leading zeros 00 through 59

Timezone --- ---

E Timezone identifier (added in PHP 5.1.0)
Examples: UTC, GMT,
Atlantic/Azores

I (capital
i)

Whether or not the date is in daylights savings
time

1 if Daylight Savings
Time, 0 otherwise.

O Difference to Greenwich time (GMT) in hours Example: +0200

T Timezone setting of this machine Examples: EST, MDT ...

Z
Timezone offset in seconds. The offset for
timezones west of UTC is always negative, and
for those east of UTC is always positive.

-43200 through 43200

Full
Date/Time

--- ---

C ISO 8601 date (added in PHP 5)
2004-02-
12T15:19:21+00:00

R RFC 2822 formatted date
Example: Thu, 21 Dec
2000 16:01:07 +0200

U
Seconds since the Unix Epoch (January 1 1970
00:00:00 GMT)

See also time()

Example:

// set the default timezone to use. Available since PHP 5.1

date_default_timezone_set('UTC');

// Prints something like: Monday

echo date("l");

// Prints something like: Monday 15th of August 2005 03:12:46 PM

echo date('l dS \of F Y h:i:s A');

 You can prevent a recognized character in the format string from being expanded

by escaping it with a preceding backslash. If the character with a backslash is

already a special sequence, you may need to also escape the backslash.

Example:

// prints something like: Wednesday the 15th

echo date("l \\t\h\e jS");

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 42

 Some examples of date() formatting. Note that you should escape any other

characters, as any which currently have a special meaning will produce

undesirable results, and other characters may be assigned meaning in future PHP

versions. When escaping, be sure to use single quotes to prevent characters like \n

from becoming newlines.

 Example:

<?php

// Assuming today is: March 10th, 2001, 5:16:18 pm

$today = date("F j, Y, g:i a"); // March 10, 2001, 5:16 pm

$today = date("m.d.y"); // 03.10.01

$today = date("j, n, Y"); // 10, 3, 2001

$today = date("Ymd"); // 20010310

$today = date('h-i-s, j-m-y, it is w Day z '); // 05-16-17, 10-03-

01, 1631 1618 6 Fripm01

$today = date('\i\t \i\s \t\h\e jS \d\a\y.'); // It is the 10th day.

$today = date("D M j G:i:s T Y"); // Sat Mar 10 15:16:08 MS

T 2001

$today = date('H:m:s \m \i\s\ \m\o\n\t\h'); // 17:03:17 m is month

$today = date("H:i:s"); // 17:16:17

?>

 getdate
 getdate -- Get date/time information

Syntax:

array getdate ([int timestamp])

 Returns an associative array containing the date information of the timestamp, or

the current local time if no timestamp is given, as the following associative array

elements:

 Key elements of the returned associative array

Key Description Example returned values

"seconds" Numeric representation of seconds 0 to 59

"minutes" Numeric representation of minutes 0 to 59

"hours" Numeric representation of hours 0 to 23

"mday"
Numeric representation of the day of the
month

1 to 31

"wday"
Numeric representation of the day of the
week

0 (for Sunday) through 6 (for
Saturday)

"mon" Numeric representation of a month 1 through 12

"year"
A full numeric representation of a year, 4
digits

Examples: 1999 or 2003

"yday"
Numeric representation of the day of the
year

0 through 365

"weekday"
A full textual representation of the day
of the week

Sunday through Saturday

"month"
A full textual representation of a month,
such as January or March

January through December

0
Seconds since the Unix Epoch, similar to
the values returned by time() and used
by date().

System Dependent, typically -
2147483648 through
2147483647.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 43

Example:

<?php

$today = getdate();

print_r($today);

?>

Output:

Array
(
 [seconds] => 40
 [minutes] => 58
 [hours] => 21
 [mday] => 17
 [wday] => 2
 [mon] => 6
 [year] => 2003
 [yday] => 167
 [weekday] => Tuesday
 [month] => June
 [0] => 1055901520
)

 checkdate

 checkdate -- Validate a Gregorian date

Syntax:

bool checkdate (int month, int day, int year)

 Returns TRUE if the date given is valid; otherwise returns FALSE. Checks the

validity of the date formed by the arguments.

 A date is considered valid if:

year is between 1 and 32767 inclusive

month is between 1 and 12 inclusive

Day is within the allowed number of days for the given month.

Leap years are taken into consideration.

Example:

<?php

var_dump(checkdate(12, 31, 2000)); // bool(true)

var_dump(checkdate(2, 29, 2001)); // bool(false)

?>

 gmdate
 gmdate -- Format a GMT/UTC date/time

Syntax:

string gmdate (string format [, int timestamp])

 Identical to the date() function except that the time returned is Greenwich Mean

Time (GMT).

 For example, when run in Finland (GMT +0200), the first line below prints "Jan

01 1998 00:00:00", while the second prints "Dec 31 1997 22:00:00".

Example:

 <?php

echo date("M d Y H:i:s", mktime(0, 0, 0, 1, 1, 1998));

echo gmdate("M d Y H:i:s", mktime(0, 0, 0, 1, 1, 1998));

 ?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 44

 time
 time -- Return current Unix timestamp

Syntax:

int time (void)

 Returns the current time measured in the number of seconds since the Unix Epoch

(January 1 1970 00:00:00 GMT).

Example:

<?php

$nextWeek = time() + (7 * 24 * 60 * 60);

 // 7 days; 24 hours; 60 mins; 60secs

echo 'Now: '. date('Y-m-d') ."\n";

echo 'Next Week: '. date('Y-m-d', $nextWeek) ."\n";

?>

Output:

Now: 2005-03-30

Next Week: 2005-04-07

 microtime
 microtime -- Return current Unix timestamp with microseconds

Syntax:

mixed microtime ([bool get_as_float])

 microtime() returns the current Unix timestamp with microseconds.

 This function is only available on operating systems that support the

gettimeofday() system call.

 When called without the optional argument, this function returns the string "msec

sec" where sec is the current time measured in the number of seconds since the

Unix Epoch (0:00:00 January 1, 1970 GMT), and msec is the microseconds part.

Both portions of the string are returned in units of seconds.

 When get_as_float is given, and evaluates to TRUE, microtime() will return a

float.

Example:

<?php
$time_start = microtime(true);
// Sleep for a while
usleep(100);

$time_end = microtime(true);
$time = $time_end - $time_start;

echo "Did nothing in $time seconds\n";

?>

 localtime
 localtime -- Get the local time

Syntax:

array localtime ([int timestamp [, bool is_associative]])

 The localtime() function returns an array identical to that of the structure returned

by the C function call.

 The first argument to localtime() is the timestamp, if this is not given the current

time as returned from time() is used.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 45

 The second argument to the localtime() is the is_associative, if this is set to

FALSE or not supplied than the array is returned as a regular, numerically

indexed array. If the argument is set to TRUE then localtime() is an associative

array containing all the different elements of the structure returned by the C

function call to localtime.

 The names of the different keys of the associative array are as follows:

 "tm_sec" - seconds

 "tm_min" - minutes

 "tm_hour" - hour

 "tm_mday" - day of the month

 "tm_mon" - month of the year, starting with 0 for January

 "tm_year" - Years since 1900

 "tm_wday" - Day of the week

 "tm_yday" - Day of the year

 "tm_isdst" - Is daylight savings time in effect

 Months are from 0 (Jan) to 11 (Dec) and days of the week are from 0 (Sun) to 6

(Sat).

Example:

<?php

$localtime = localtime();

$localtime_assoc = localtime(time(), true);

print_r($localtime);

print_r($localtime_assoc);

?>

Output:

Array
(
 [0] => 24
 [1] => 3
 [2] => 19
 [3] => 3
 [4] => 3
 [5] => 105
 [6] => 0
 [7] => 92
 [9] => 1
)

Array
(
 [tm_sec] => 24
 [tm_min] => 3
 [tm_hour] => 19
 [tm_mday] => 3
 [tm_mon] => 3
 [tm_year] => 105
 [tm_wday] => 0
 [tm_yday] => 92
 [tm_isdst] => 1
)

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 46

 mktime

 mktime -- Get Unix timestamp for a date

Syntax:

int mktime ([int hour [, int minute [, int second [, int month [, int day [, int

year [, int is_dst]]]]]]])

 Returns the Unix timestamp corresponding to the arguments given. This

timestamp is a long integer containing the number of seconds between the Unix

Epoch (January 1 1970 00:00:00 GMT) and the time specified.

 Arguments may be left out in order from right to left; any arguments thus omitted

will be set to the current value according to the local date and time.

 Parameters

 hour : The number of the hour.

 Minute : The number of the minute.

 second :The number of seconds past the minute.

 month :The number of the month.

 day :The number of the day.

 year :

The number of the year, may be a two or four digit value, with values

between 0-69 mapping to 2000-2069 and 70-100 to 1970-2000. On systems where

time_t is a 32bit signed integer, as most common today, the valid range for year is

somewhere between 1901 and 2038, although this limitation is overcome as of

PHP 5.1.0.

 is_dst :

This parameter can be set to 1 if the time is during daylight savings time

(DST), 0 if it is not, or -1 (the default) if it is unknown whether the time is within

daylight savings time or not. If it's unknown, PHP tries to figure it out itself. This

can cause unexpected (but not incorrect) results. Some times are invalid if DST is

enabled on the system PHP is running on or is_dst is set to 1. If DST is enabled in

e.g. 2:00, all times between 2:00 and 3:00 are invalid and mktime() returns an

undefined (usually negative) value. Some systems (e.g. Solaris 8) enable DST at

midnight so time 0:30 of the day when DST is enabled is evaluated as 23:30 of

the previous day.

 Return Values

mktime() returns the Unix timestamp of the arguments given. If the arguments

are invalid (eg. if the year, month and day are all 0), the function returns FALSE

(before PHP 5.1 it returned -1).

Examples

 each of the following lines produces the string "Jan-01-1998".

<?php

echo date("M-d-Y", mktime(0, 0, 0, 12, 32, 1997));

echo date("M-d-Y", mktime(0, 0, 0, 13, 1, 1997));

echo date("M-d-Y", mktime(0, 0, 0, 1, 1, 1998));

echo date("M-d-Y", mktime(0, 0, 0, 1, 1, 98));

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 47

ARRAY FUNCTIONS

 list
 list -- Assign variables as if they were an array

Syntax:

void list (mixed varname, mixed ...)

 Like array(), this is not really a function, but a language construct.

 list() is used to assign a list of variables in one operation.

 list() only works on numerical arrays and assumes the numerical indices start at 0.

Example:

<?php

$info = array('coffee', 'brown', 'caffeine');

// Listing all the variables

list($drink, $color, $power) = $info;

echo "$drink is $color and $power makes it special.\n";

// Listing some of them

list($drink, , $power) = $info;

echo "$drink has $power.\n";

// Or let's skip to only the third one

list(, , $power) = $info;

echo "I need $power!\n";

?>

 is_array
 is_array -- Finds whether a variable is an array

Syntax:

bool is_array (mixed var)

 Parameters

 var : The variable being evaluated.

 Return Values

 Returns TRUE if var is an array, FALSE otherwise.

Examples

<?php

$yes = array('this', 'is', 'an array');

echo is_array($yes) ? 'Array' : 'not an Array';

$no = 'this is a string';

echo is_array($no) ? 'Array' : 'not an Array';

?>

 count
 count -- Count elements in an array, or properties in an object

Syntax:

int count (mixed var [, int mode])

 Returns the number of elements in var, which is typically an array, since anything

else will have one element.

 If var is not an array or an object with implemented Countable interface, 1 will be

returned. There is one exception, if var is NULL, 0 will be returned.

 If the optional mode parameter is set to COUNT_RECURSIVE (or 1), count()

will recursively count the array. This is particularly useful for counting all the

elements of a multidimensional array. The default value for mode is 0. count()

does not detect infinite recursion.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 48

 Please see the Array section of the manual for a detailed explanation of how

arrays are implemented and used in PHP.

Example:

<?php

$a[0] = 1;

$a[1] = 3;

$a[2] = 5;

$result = count($a); // $result == 3

$b[0] = 7;

$b[5] = 9;

$b[10] = 11;

$result = count($b); // $result == 3

$result = count(null); // $result == 0

$result = count(false); // $result == 1

?>

 sizeof
 sizeof -- Alias of count()

 in_array
 in_array -- Checks if a value exists in an array

Syntax:

bool in_array (mixed needle, array haystack [, bool strict])

 Searches haystack for needle and returns TRUE if it is found in the array, FALSE

otherwise.

 If the third parameter strict is set to TRUE then the in_array() function will also

check the types of the needle in the haystack.

 If needle is a string, the comparison is done in a case-sensitive manner.

Example:

<?php

$os = array("Mac", "NT", "Irix", "Linux");

if (in_array("Irix", $os)) {

 echo "Got Irix";

}

if (in_array("mac", $os)) {

 echo "Got mac";

}

$a = array('1.10', 12.4, 1.13);

if (in_array('12.4', $a, true)) {

 echo "'12.4' found with strict check\n";

}

if (in_array(1.13, $a, true)) {

 echo "1.13 found with strict check\n";

}

?>

Output:

Got Irix

1.13 found with strict check

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 49

 unset
 unset -- Unset a given variable

Syntax:

void unset (mixed var [, mixed var [, mixed ...]])

 unset() destroys the specified variables.

Example:

<?php

// destroy a single variable

unset($foo);

// destroy a single element of an array

unset($bar['quux']);

// destroy more than one variable

unset($foo1, $foo2, $foo3);

?>

 current
 current -- Return the current element in an array

Syntax:

mixed current (array &array)

 Every array has an internal pointer to its "current" element, which is initialized to

the first element inserted into the array.

 The current() function simply returns the value of the array element that's

currently being pointed to by the internal pointer. It does not move the pointer in

any way.

 If the internal pointer points beyond the end of the elements list, current() returns

FALSE.

 pos

 pos -- Alias of current()

 next
 next -- Advance the internal array pointer of an array

Syntax:

mixed next (array &array)

 Returns the array value in the next place that's pointed to by the internal array

pointer, or FALSE if there are no more elements.

 prev
 prev -- Rewind the internal array pointer

Syntax:

mixed prev (array &array)

 Returns the array value in the previous place that's pointed to by the internal array

pointer, or FALSE if there are no more elements.

 reset
 reset -- Set the internal pointer of an array to its first element

Syntax:

mixed reset (array &array)

 reset() rewinds array's internal pointer to the first element and returns the value of

the first array element, or FALSE if the array is empty.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 50

 end
 end -- Set the internal pointer of an array to its last element

Syntax:

mixed end (array &array)

 end() advances array's internal pointer to the last element, and returns its value.

Example:

<?php
$transport = array('foot', 'bike', 'car', 'plane');
$mode = current($transport); // $mode = 'foot';
$mode = next($transport); // $mode = 'bike';
$mode = next($transport); // $mode = 'car';
$mode = prev($transport); // $mode = 'bike';
$mode = end($transport); // $mode = 'plane';
$mode = reset($transport); // $mode = 'foot';

?>

 each
 each -- Return the current key and value pair from an array and advance the array

cursor

Syntax:

array each (array &array)

 Returns the current key and value pair from the array array and advances the

array cursor. This pair is returned in a four-element array, with the keys 0, 1, key,

and value. Elements 0 and key contain the key name of the array element, and 1

and value contain the data.

 If the internal pointer for the array points past the end of the array contents, each()

returns FALSE.

Example:

$foo = array("bob", "fred", "jussi", "jouni", "egon", "marliese");

$bar = each($foo);

print_r($bar);

Output:

Array
(
 [1] => bob
 [value] => bob
 [0] => 0
 [key] => 0
)

Example:

$foo = array("Robert" => "Bob", "Seppo" => "Sepi");

$bar = each($foo);

print_r($bar);

 Output:

Array
(
 [1] => Bob
 [value] => Bob
 [0] => Robert
 [key] => Robert
)

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 51

Example:

$fruit = array('a' => 'apple', 'b' => 'banana', 'c' => 'cranberry');
reset($fruit);
while (list($key, $val) = each($fruit)) {
 echo "$key => $val\n";
}

 Output:
a => apple
b => banana
c => cranberry

 array_walk

 array_walk -- Apply a user function to every member of an array

Syntax:

bool array_walk (array &array, callback funcname [, mixed userdata])

 Returns TRUE on success or FALSE on failure.

 Applies the user-defined function funcname to each element of the array array.

Typically, funcname takes on two parameters. The array parameter's value being

the first, and the key/index second. If the optional userdata parameter is supplied,

it will be passed as the third parameter to the callback funcname.

 If funcname needs to be working with the actual values of the array, specify the

first parameter of funcname as a reference. Then, any changes made to those

elements will be made in the original array itself.

 array_walk() is not affected by the internal array pointer of array. array_walk()

will walk through the entire array regardless of pointer position.

 Users may not change the array itself from the callback function. e.g. Add/delete

elements, unset elements, etc.

Example:
$fruits = array("d" => "lemon", "a" => "orange", "b" => "banana", "c" => "apple");
function test_alter(&$item1, $key, $prefix)
{
 $item1 = "$prefix: $item1";
}
function test_print($item2, $key)
{
 echo "$key. $item2
\n";
}
echo "Before ...:\n";
array_walk($fruits, 'test_print');

array_walk($fruits, 'test_alter', 'fruit');
echo "... and after:\n";

array_walk($fruits, 'test_print');

Output :
Before ...:
d. lemon
a. orange
b. banana
c. apple
... and after:
d. fruit: lemon
a. fruit: orange
b. fruit: banana
c. fruit: apple

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 52

 sort

 sort -- Sort an array

Syntax:

bool sort (array &array [, int sort_flags])

 This function sorts an array. Elements will be arranged from lowest to highest

when this function has completed.

 This function assigns new keys for the elements in array. It will remove any

existing keys you may have assigned, rather than just reordering the keys.

 Returns TRUE on success or FALSE on failure.

Example:

<?php

$fruits = array("lemon", "orange", "banana", "apple");

sort($fruits);

foreach ($fruits as $key => $val) {

 echo "fruits[" . $key . "] = " . $val . "\n";

}

?>

Output:

fruits[0] = apple
fruits[1] = banana
fruits[2] = lemon
fruits[3] = orange

 The fruits have been sorted in alphabetical order.

 The optional second parameter sort_flags may be used to modify the sorting

behavior using these values:

 Sorting type flags:

 SORT_REGULAR - compare items normally (don't change types)

 SORT_NUMERIC - compare items numerically

 SORT_STRING - compare items as strings

 SORT_LOCALE_STRING - compare items as strings, based on

the current locale.

 rsort
 rsort -- Sort an array in reverse order

Syntax:

bool rsort (array &array [, int sort_flags])

 This function sorts an array in reverse order (highest to lowest).

 This function assigns new keys for the elements in array. It will remove any

existing keys you may have assigned, rather than just reordering the keys.

 Returns TRUE on success or FALSE on failure.

Example:
<?php

$fruits = array("lemon", "orange", "banana", "apple");
rsort($fruits);
foreach ($fruits as $key => $val) {
 echo "$key = $val\n";
}

?>
 Output:

0 = orange
1 = lemon
2 = banana
3 = apple

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 53

 asort

 asort -- Sort an array and maintain index association

Syntax:

bool asort (array &array [, int sort_flags])

 This function sorts an array such that array indices maintain their correlation with

the array elements they are associated with.

 This is used mainly when sorting associative arrays where the actual element

order is significant.

 Returns TRUE on success or FALSE on failure.

Example:

$fruits = array("d" =>"lemon", "a" =>"orange", "b" => "banana", "c" => "apple");

asort($fruits);

foreach ($fruits as $key => $val) {

 echo "$key = $val\n";

}

Output:

c = apple
b = banana
d = lemon
a = orange

 arsort
 arsort -- Sort an array in reverse order and maintain index association

 key

 key -- Fetch a key from an associative array

Syntax:

mixed key (array &array)

 key() returns the index element of the current array position.

Example:

<?php

$array = array('fruit1' => 'apple', 'fruit2' => 'orange','fruit3' => 'grape',

'fruit4' => 'apple','fruit5' => 'apple');

// this cycle echoes all associative array key where value equals "apple"

while ($fruit_name = current($array)) {

 if ($fruit_name == 'apple') {

 echo key($array).'
';

 }

next($array);

}

?>

 array_merge
 array_merge -- Merge one or more arrays

Syntax:

array array_merge (array array1 [, array array2 [, array ...]])

 array_merge() merges the elements of one or more arrays together so that the

values of one are appended to the end of the previous one. It returns the resulting

array.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 54

 If the input arrays have the same string keys, then the later value for that key will

overwrite the previous one. If, however, the arrays contain numeric keys, the later

value will not overwrite the original value, but will be appended.

 If only one array is given and the array is numerically indexed, the keys get

reindexed in a continuous way.

Example:

<?php

$array1 = array("color" => "red", 2, 4);

$array2 = array("a", "b", "color" => "green", "shape" => "trapezoid", 4);

$result = array_merge($array1, $array2);

print_r($result);

?>

 Output:

Array

(

 [color] => green

 [0] => 2

 [1] => 4

 [2] => a

 [3] => b

 [shape] => trapezoid

 [4] => 4

)

 array_combine
 array_combine -- Creates an array by using one array for keys and another for its

values

Syntax:

array array_combine (array keys, array values)

 Returns an array by using the values from the keys array as keys and the values

from the values array as the corresponding values.

 Returns FALSE if the number of elements for each array isn't equal or if the

arrays are empty.

Example:

<?php

$a = array('green', 'red', 'yellow');

$b = array('avocado', 'apple', 'banana');

$c = array_combine($a, $b);

print_r($c);

?>

Output:

Array
(
 [green] => avocado
 [red] => apple
 [yellow] => banana
)

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 55

 array_values

 array_values -- Return all the values of an array

Syntax:

array array_values (array input)

 array_values() returns all the values from the input array and indexes numerically

the array.

Example:

<?php

$array = array("size" => "XL", "color" => "gold");

print_r(array_values($array));

?>

Output:

Array

(

 [0] => XL

 [1] => gold

)

 array_keys
 array_keys -- Return all the keys of an array

Syntax:

array array_keys (array input [, mixed search_value [, bool strict]])

 array_keys() returns the keys, numeric and string, from the input array.

 If the optional search_value is specified, then only the keys for that value are

returned. Otherwise, all the keys from the input are returned. As of PHP 5, you

can use strict parameter for comparison including type (===).

Example:

<?php

$array = array(0 => 100, "color" => "red");

print_r(array_keys($array));

 ?>

 Output:

Array
(
 [0] => 0
 [1] => color
)

 array_key_exists
 array_key_exists -- Checks if the given key or index exists in the array

Syntax:

bool array_key_exists (mixed key, array search)

 array_key_exists() returns TRUE if the given key is set in the array. key can be

any value possible for an array index. array_key_exists() also works on objects.

Example:

<?php

$search_array = array('first' => 1, 'second' => 4);

if (array_key_exists('first', $search_array)) {

 echo "The 'first' element is in the array";

}

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 56

 array_reverse
 array_reverse -- Return an array with elements in reverse order

Syntax:

array array_reverse (array array [, bool preserve_keys])

 array_reverse() takes input array and returns a new array with the order of the

elements reversed, preserving the keys if preserve_keys is TRUE.

Example:

<?php

$input = array("php", 4.0, array("green", "red"));

$result = array_reverse($input);

$result_keyed = array_reverse($input, true);

?>

 This makes both $result and $result_keyed have the same elements, but note the

difference between the keys. The printout of $result and $result_keyed will be:

Array

(

 [0] => Array

 (

 [0] => green

 [1] => red

)

 [1] => 4

 [2] => php

)

Array

(

 [2] => Array

 (

 [0] => green

 [1] => red

)

 [1] => 4

 [0] => php

)

 array_push
 array_push -- Push one or more elements onto the end of array

Syntax:

int array_push (array &array, mixed var [, mixed ...])

 array_push() treats array as a stack, and pushes the passed variables onto the end

of array. The length of array increases by the number of variables pushed.

 Returns the new number of elements in the array.

Example:

$stack = array("orange", "banana");

array_push($stack, "apple", "raspberry");

print_r($stack);

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 57

Output:

Array

(

 [0] => orange

 [1] => banana

 [2] => apple

 [3] => raspberry

)

 array_pop
 array_pop -- Pop the element off the end of array

Syntax:

mixed array_pop (array &array)

 array_pop() pops and returns the last value of the array, shortening the array by

one element. If array is empty (or is not an array), NULL will be returned.

 This function will reset() the array pointer after use.

Example:

<?php

$stack = array("orange", "banana", "apple", "raspberry");

$fruit = array_pop($stack);

print_r($stack);

?>

Output:

Array

(

 [0] => orange

 [1] => banana

 [2] => apple

)

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 58

File System Function

 fopen
 fopen -- Opens file or URL

Syntax:

resource fopen (string filename, string mode [, bool use_include_path])

 fopen() binds a named resource, specified by filename, to a stream. If filename is

of the form "scheme://...", it is assumed to be a URL and PHP will search for a

protocol handler (also known as a wrapper) for that scheme. If no wrappers for

that protocol are registered, PHP will emit a notice to help you track potential

problems in your script and then continue as though filename specifies a regular

file.

 If PHP has decided that filename specifies a local file, then it will try to open a

stream on that file. The file must be accessible to PHP, so you need to ensure that

the file access permissions allow this access.

 The mode parameter specifies the type of access you require to the stream. It may

be any of the following:

 A list of possible modes for fopen() using mode

mode Description

'r' Open for reading only; place the file pointer at the beginning of the file.

'r+'
Open for reading and writing; place the file pointer at the beginning of the
file.

'w'
Open for writing only; place the file pointer at the beginning of the file and
truncate the file to zero length. If the file does not exist, attempt to create it.

'w+'
Open for reading and writing; place the file pointer at the beginning of the
file and truncate the file to zero length. If the file does not exist, attempt to
create it.

'a'
Open for writing only; place the file pointer at the end of the file. If the file
does not exist, attempt to create it.

'a+'
Open for reading and writing; place the file pointer at the end of the file. If
the file does not exist, attempt to create it.

'x'

Create and open for writing only; place the file pointer at the beginning of
the file. If the file already exists, the fopen() call will fail by returning
FALSE and generating an error of level E_WARNING. If the file does not
exist, attempt to create it. This is equivalent to specifying
O_EXCL|O_CREAT flags for the underlying open(2) system call. This
option is supported in PHP 4.3.2 and later, and only works for local files.

'x+'

Create and open for reading and writing; place the file pointer at the
beginning of the file. If the file already exists, the fopen() call will fail by
returning FALSE and generating an error of level E_WARNING. If the file
does not exist, attempt to create it. This is equivalent to specifying
O_EXCL|O_CREAT flags for the underlying open(2) system call. This
option is supported in PHP 4.3.2 and later, and only works for local files.

 The optional third use_include_path parameter can be set to '1' or TRUE if you

want to search for the file in the include_path, too.

 If the open fails, the function returns FALSE and an error of level E_WARNING

is generated. You may use @ to suppress this warning.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 59

Example:

<?php

$handle = fopen("/home/rasmus/file.txt", "r");

$handle = fopen("/home/rasmus/file.gif", "wb");

$handle = fopen("http://www.example.com/", "r");

$handle = fopen("ftp://user:password@example.com/somefile.txt", "w");

?>

 If you are experiencing problems with reading and writing to files and you're

using the server module version of PHP, remember to make sure that the files and

directories you're using are accessible to the server process.

 On the Windows platform, be careful to escape any backslashes used in the path

to the file, or use forward slashes.

<?php
$handle = fopen("c:\\data\\info.txt", "r");

?>
 fread

 fread -- Binary-safe file read

Syntax:

string fread (resource handle, int length)

 fread() reads up to length bytes from the file pointer referenced by handle.

Reading stops when length bytes have been read, EOF (end of file) is reached, or

(for network streams) when a packet becomes available, whichever comes first.

Example:

<?php

// get contents of a file into a string

$filename = "/usr/local/something.txt";

$handle = fopen($filename, "r");

$contents = fread($handle, filesize($filename));

fclose($handle);

 ?>

 fwrite

 fwrite -- Binary-safe file write

Syntax:

int fwrite (resource handle, string string [, int length])

 fwrite() writes the contents of string to the file stream pointed to by handle. If the

length argument is given, writing will stop after length bytes have been written or

the end of string is reached, whichever comes first.

 fwrite() returns the number of bytes written, or FALSE on error.

 if the length argument is given, then the magic_quotes_runtime configuration

option will be ignored and no slashes will be stripped from string.

Example:

<?php
$filename = 'test.txt';
$somecontent = "Add this to the file\n";
$handle=fopen($filename, 'a')
fwrite($handle, $somecontent)
fclose($handle);

 ?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 60

 fclose

 fclose -- Closes an open file pointer

Syntax:

bool fclose (resource handle)

 The file pointed to by handle is closed.

 Returns TRUE on success or FALSE on failure.

 The file pointer must be valid, and must point to a file successfully opened by

fopen().

Example:
<?php

 $handle = fopen('somefile.txt', 'r');
 fclose($handle);
 ?>

 file_exists

 file_exists -- Checks whether a file or directory exists

Syntax:

bool file_exists (string filename)

 Returns TRUE if the file or directory specified by filename exists; FALSE

otherwise.

 On windows, use //computername/share/filename or

\\computername\share\filename to check files on network shares.

Example:

<?php

$filename = '/path/to/foo.txt';

if (file_exists($filename)) {

 echo "The file $filename exists";

} else {

 echo "The file $filename does not exist";

}

 ?>

 is_readable
 is_readable -- Tells whether the filename is readable

Syntax:

bool is_readable (string filename)

 Returns TRUE if the filename exists and is readable.

 Keep in mind that PHP may be accessing the file as the user id that the web server

runs as (often 'nobody'). Safe mode limitations are not taken into account.

Example:

<?php

$filename = 'test.txt';

if (is_readable($filename)) {

 echo 'The file is readable';

} else {

 echo 'The file is not readable';

}

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 61

 is_writable

 is_writable -- Tells whether the filename is writable

Syntax:

bool is_writable (string filename)

 Returns TRUE if the filename exists and is writable. The filename argument may

be a directory name allowing you to check if a directory is writeable.

 Keep in mind that PHP may be accessing the file as the user id that the web server

runs as (often 'nobody'). Safe mode limitations are not taken into account.

Example:

<?php

$filename = 'test.txt';

if (is_writable($filename)) {

 echo 'The file is writable';

} else {

 echo 'The file is not writable';

}

 ?>

 fgets
 fgets -- Gets line from file pointer

Syntax:

string fgets (resource handle [, int length])

 Returns a string of up to length - 1 bytes read from the file pointed to by handle.

 Reading ends when length - 1 bytes have been read, on a newline (which is

included in the return value), or on EOF (whichever comes first). If no length is

specified, the length defaults to 1k, or 1024 bytes.

 If an error occurs, returns FALSE.

Example: Reading a file line by line

<?php

$handle = fopen("/tmp/inputfile.txt", "r");

while (!feof($handle)) {

 $buffer = fgets($handle, 4096);

 echo $buffer;

}

fclose($handle);

 ?>

 fgetc
 fgetc -- Gets character from file pointer

Syntax:

string fgetc (resource handle)

 Returns a string containing a single character read from the file pointed to by

handle. Returns FALSE on EOF.

Example:

<?php
$fp = fopen('somefile.txt', 'r');
if (!$fp) {
 echo 'Could not open file somefile.txt';
}
while (false !== ($char = fgetc($fp))) {
 echo "$char\n";
}

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 62

 file

 file -- Reads entire file into an array

Syntax:

array file (string filename [, int use_include_path])

 Identical to readfile(), except that file() returns the file in an array.

 Each element of the array corresponds to a line in the file, with the newline still

attached. Upon failure, file() returns FALSE.

 You can use the optional use_include_path parameter and set it to "1", if you

want to search for the file in the include_path, too.

Example :

<?php

 $lines = file(“test.txt”);

 foreach ($lines as $line_num => $line)

 {

 echo "Line = {$line_num} : " . $line . "
";

 }

 ?>

 file_get_contents
 file_get_contents -- Reads entire file into a string

Syntax:

string file_get_contents (string filename [, bool use_include_path])

 Identical to file(), except that file_get_contents() returns the file in a string,

starting at the specified offset up to maxlen bytes.

 On failure, file_get_contents() will return FALSE.

 file_get_contents() is the preferred way to read the contents of a file into a string.

It will use memory mapping techniques if supported by your OS to enhance

performance.

Example :

<?php

 $str = file_get_contents(“test.txt”);

 echo $str;

?>

 file_put_contents

 file_put_contents -- Write a string to a file

 Syntax:

int file_put_contents (string filename, mixed data[, int flags [, resource context]])

 You can also specify the data parameter as an array (not multi-dimension arrays).

This is equivalent to file_put_contents($filename, join('', $array)).

 As of PHP 5.1.0, you may also pass a stream resource to the data parameter. In

result, the remaining buffer of that stream will be copied to the specified file.

 Parameters

 filename :The file name where to write the data

 data :The data to write. Can be either a string, an array or a stream resource flags

 flags can take FILE_USE_INCLUDE_PATH, FILE_APPEND and/or LOCK_EX

(acquire an exclusive lock), however the FILE_USE_INCLUDE_PATH option

should be used with caution.

 context : A context resource

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 63

 Return Values: The function returns the amount of bytes that were written to the

file.

Example:

<?php

 $filename = 'test.txt';

$str = file_put_contents($filename,"WELCOME TO RPBC",FILE_APPEND);

 echo $str;

?>

 ftell
 ftell -- Tells file pointer read/write position

Syntax:

int ftell (resource handle)

 Returns the position of the file pointer referenced by handle; i.e., its offset into the

file stream.

 If an error occurs, returns FALSE.

 ftell() gives undefined results for append-only streams (opened with "a" flag).

Example:

<?php

// opens a file and read some data

$fp = fopen("/etc/passwd", "r");

$data = fgets($fp, 12);

echo ftell($fp); // 11

fclose($fp);

?>

 fseek
 fseek -- Seeks on a file pointer

Example:

int fseek (resource handle, int offset [, int whence])

 Sets the file position indicator for the file referenced by handle.

 The new position, measured in bytes from the beginning of the file, is obtained by

adding offset to the position specified by whence, whose values are defined as

follows:

SEEK_SET - Set position equal to offset bytes.
SEEK_CUR - Set position to current location plus offset.
SEEK_END - Set position to end-of-file plus offset. (To move to a
position before the end-of-file, you need to pass a negative value in offset.)

 If whence is not specified, it is assumed to be SEEK_SET.

 Upon success, returns 0; otherwise, returns -1. Note that seeking past EOF is not

considered an error.

Example:

<?php
$fp = fopen('somefile.txt');
// read some data
$data = fgets($fp, 4096);
// move back to the beginning of the file same as rewind($fp);
fseek($fp, 0);

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 64

 rewind
 rewind -- Rewind the position of a file pointer

Example:

bool rewind (resource handle)

 Sets the file position indicator for handle to the beginning of the file stream.

 Returns TRUE on success or FALSE on failure.

 copy

 copy -- Copies file

Syntax:

bool copy (string source, string dest)

 Makes a copy of the file source to dest.

 Returns TRUE on success or FALSE on failure.

Example:

<?php

$file = 'example.txt';

$newfile = 'copyfile.txt';

if (!copy($file, $newfile)) {

 echo "failed to copy $file...\n";

}

 ?>

 unlink
 unlink -- Deletes a file

Example:

bool unlink (string filename)

 Deletes filename. Similar to the Unix C unlink() function.

 Returns TRUE on success or FALSE on failure.

 rename
 rename -- Renames a file or directory

Example:

bool rename (string oldname, string newname)

 Attempts to rename oldname to newname.

 Returns TRUE on success or FALSE on failure.

Example:

<?php

rename("/tmp/tmp_file.txt", "/home/user/login/docs/my_file.txt");

?>

 filesize
 filesize -- Gets file size

Syntax:

int filesize (string filename)

 Returns the size of the file in bytes, or FALSE (and generates an error of level

E_WARNING) in case of an error.

Example:

$filename = 'somefile.txt';

echo $filename . ': ' . filesize($filename) . ' bytes';

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 65

 filetype
 filetype -- Gets file type

Syntax:

string filetype (string filename)

 Returns the type of the file. Possible values are fifo, char, dir, block, link, file, and

unknown.

 Returns FALSE if an error occurs.

Example:

<?php
echo filetype('/etc/passwd'); // file
echo filetype('/etc/'); // dir

?>

 basename

 basename -- Returns filename component of path

Syntax:

string basename (string path [, string suffix])

 Given a string containing a path to a file, this function will return the base name

of the file. If the filename ends in suffix this will also be cut off.

Example:

<?php

$path = "/home/httpd/html/index.php";

$file = basename($path); // $file is set to "index.php"

$file = basename($path, ".php"); // $file is set to "index"

 ?>

 dirname
 dirname -- Returns directory name component of path

Syntax:

string dirname (string path)

 Given a string containing a path to a file, this function will return the name of the

directory.

Example:

<?php

$path = "/etc/passwd";

$file = dirname($path); // $file is set to "/etc"

 ?>

 pathinfo
 pathinfo -- Returns information about a file path

Syntax:

array pathinfo (string path [, int options])

 pathinfo() returns an associative array containing information about path. The

following array elements are returned: dirname, basename and extension.

 You can specify which elements are returned with optional parameter options. It

composes from PATHINFO_DIRNAME, PATHINFO_BASENAME and

PATHINFO_EXTENSION.

 It defaults to return all elements.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 66

Example:

<?php

$path_parts = pathinfo('/www/htdocs/index.html');

echo $path_parts['dirname'], "\n"; // /www/htdocs

echo $path_parts['basename'], "\n"; // index.html

echo $path_parts['extension'], "\n"; // html

?>

 fileatime
 fileatime -- Gets last access time of file

Syntax:

int fileatime (string filename)

 Returns the time the file was last accessed, or FALSE in case of an error. The

time is returned as a Unix timestamp.

 filemtime
 filemtime -- Gets file modification time

Syntax:

int filemtime (string filename)

 Returns the time the file was last modified, or FALSE in case of an error.

 The time is returned as a Unix timestamp, which is suitable for the date()

function.

Example:

<?php
$filename = 'somefile.txt';
if (file_exists($filename)) {
 echo "last modified: " . date ("F d Y H:i:s.", filemtime($filename));
 echo "last access: " . date ("F d Y H:i:s.", fileatime($filename));
}

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 67

Miscellaneous Functions

 define

 define -- Defines a named constant

Example:

bool define (string name, mixed value [, bool case_insensitive])

 Defines a named constant.

 The name of the constant is given by name; the value is given by value.

 The optional third parameter case_insensitive is also available. If the value TRUE

is given, then the constant will be defined case-insensitive.

 The default behaviour is case-sensitive; i.e. CONSTANT and Constant represent

different values.

 defined
 defined -- Checks whether a given named constant exists

Syntax:

bool defined (string name)

 Returns TRUE if the named constant given by name has been defined, FALSE

otherwise.

 constant

 constant -- Returns the value of a constant

Syntax:

mixed constant (string name)

 constant() will return the value of the constant indicated by name.

 constant() is useful if you need to retrieve the value of a constant, but do not know

its name.

Example:

<?php
define("CONSTANT", "Hello world.");
define("GREETING", "Hello you.", true);

echo CONSTANT; // outputs "Hello world."
if (defined(‘GREETING’)
{

echo GREETING; // outputs "Hello you."
echo Greeting; // outputs "Hello you."

}
echo constant(‘CONSTANT’);

?>

 sleep
 sleep -- Delay execution

Syntax:

int sleep (int seconds)

 The sleep() function delays program execution for the given number of seconds.

Example:

<?php
echo date('h:i:s') . "\n"; \\ 10:10:10
sleep(10); // sleep for 10 seconds
echo date('h:i:s') . "\n"; \\ 10:10:20

 ?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 68

 exit

 exit -- Output a message and terminate the current script

Syntax:

void exit ([string status])

 This is not a real function, but a language construct.

 The exit() function terminates execution of the script. It prints status just before

exiting.

Example:

<?php

$filename = '/path/to/data-file';

$file = fopen($filename, 'r') or exit("unable to open file ($filename)");

 ?>

 die :
 die -- Equivalent to exit()

 INCLUDEING Files

 You can add PHP to your HTML is by putting it in a separate file and calling it by

using PHP’s include functions.

 There are four include functions.

 include (‘ /filepath/filename’)

 require (‘ /filepath/filename’)

 include_once (‘ /filepath/filename’)

 require_once (‘ /filepath/filename’)

 in previous version of PHP, there were significant differences in functionality and

speed between the include function and require function. This is no longer true.

 The difference only in the kind of error they throw on failure.

 include() and include_once() will generate a warning on failure.

 require() and require_once() will cause a fatal error and termination of the

script.

 include_once() and require_once() differ from include() and require() in that

they will allow a file to be include only once per PHP script.

 include_once() and require_once() is extremely helpful when you are including

the file that contain PHP functions, because redeclaring functions result in an

automatic fatal error.

 In large PHP systems, it’s quite common to include files which include other

files- it can be difficult to remember whether you’ve included a particular

function before, but with include_once() or require_once() you don’t have to.

Example:

 The most common use of PHP’s include capability to add common header nad

footer to all the web pages on a site.

 Header.inc

<html>

<head>

 <title> Welcome To RPBC </title>

</head>

<body>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 69

 Footer.inc

<p> Copyright 1997 – 2006 </p>

</body>

</html>

 Final.php

<?php

 require_once(“header.inc”);

 echo “Hello World”;

 include_once(“footer.inc”);

 ?>

 header
 header -- Send a raw HTTP header

Synatx:

void header (string string [, bool replace [, int http_response_code]])

 header() is used to send raw HTTP headers.

 The optional replace parameter indicates whether the header should replace a

previous similar header, or add a second header of the same type. By default it

will replace, but if you pass in FALSE as the second argument you can force

multiple headers of the same type.

 For example:

<?php
header('WWW-Authenticate: Negotiate');
header('WWW-Authenticate: NTLM', false);

?>
 The second optional http_response_code force the HTTP response code to the

specified value.

 There are two special-case header calls.

 The first is a header that starts with the string "HTTP/" (case is not

significant), which will be used to figure out the HTTP status code to send.

Example:

<?php

header("HTTP/1.0 404 Not Found");

?>

 The HTTP status header line will always be the first sent to the client, regardless

of the actual header() call being the first or not. The status may be overridden by

calling header() with a new status line at any time unless the HTTP headers have

already been sent.

 The second special case is the "Location:" header. Not only does it send this

header back to the browser, but it also returns a REDIRECT (302) status code to

the browser unless some 3xx status code has already been set.

Example:

<?php
header("Location: http://www.rpbc.edu/"); /* Redirect browser */
/* Make sure that code below does not get executed when we redir
ect. */
exit;

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 70

 PHP scripts often generate dynamic content that must not be cached by the client

browser or any proxy caches between the server and the client browser. Many

proxies and clients can be forced to disable caching with:

Example:

<?php

header("Cache-Control: no-cache, must-revalidate"); // HTTP/1.1

header("Expires: Mon, 26 Jul 1997 05:00:00 GMT");

 ?>

 Remember that header() must be called before any actual output is sent, either by

normal HTML tags, blank lines in a file, or from PHP. It is a very common error

to read code with include(), or require(), functions, or another file access function,

and have spaces or empty lines that are output before header() is called. The same

problem exists when using a single PHP/HTML file.

Example:

<html>

<?php

/* This will give an error. Note the output above, which is before t

he header() call */

header('Location: http://www.example.com/');

?>

 If you want the user to be prompted to save the data you are sending, such as a

generated PDF file, you can use the Content-Disposition header to supply a

recommended filename and force the browser to display the save dialog.

Example:
<?php
 // We'll be outputting a PDF

header('Content-type: application/pdf');

// It will be called downloaded.pdf
header('Content-
Disposition: attachment; filename="downloaded.pdf"');

// The PDF source is in original.pdf
readfile('original.pdf');

?>

 setcookie
 setcookie -- Send a cookie

Syntax:

bool setcookie (string name [, string value [, int expire [, string path [, string

domain [, bool secure]]]]])

 setcookie() defines a cookie to be sent along with the rest of the HTTP headers.

 Like other headers, cookies must be sent before any output from your script (this

is a protocol restriction). This requires that you place calls to this function prior to

any output, including <html> and <head> tags as well as any whitespace.

 If output exists prior to calling this function, setcookie() will fail and return

FALSE. If setcookie() successfully runs, it will return TRUE. This does not

indicate whether the user accepted the cookie.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 71

 All the arguments except the name argument are optional. You may also replace

an argument with an empty string ("") in order to skip that argument. Because the

expire argument is integer, it cannot be skipped with an empty string, use a zero

(0) instead.

 The following table explains each parameter of the setcookie() function, be sure

to read the Netscape cookie specification for specifics on how each setcookie()

parameter works for additional information on how HTTP cookies work.

 setcookie() parameters explained

Parameter Description Examples

name The name of the cookie.
'cookiename' is called as
$_COOKIE['cookiename']

value

The value of the cookie.
This value is stored on the
clients computer; do not
store sensitive information.

Assuming the name is 'cookiename', this
value is retrieved through
$_COOKIE['cookiename']

expire

The time the cookie
expires. This is a Unix
timestamp so is in number
of seconds since the epoch.
In other words, you'll most
likely set this with the
time() function plus the
number of seconds before
you want it to expire. Or
you might use mktime().

time()+60*60*24*30 will set the cookie
to expire in 30 days. If not set, the cookie
will expire at the end of the session
(when the browser closes).

path
The path on the server in
which the cookie will be
available on.

If set to '/', the cookie will be available
within the entire domain. If set to '/foo/',
the cookie will only be available within
the /foo/ directory and all sub-directories
such as /foo/bar/ of domain. The default
value is the current directory that the
cookie is being set in.

domain
The domain that the cookie
is available.

To make the cookie available on all
subdomains of example.com then you'd
set it to '.example.com'. The . is not
required but makes it compatible with
more browsers. Setting it to
www.example.com will make the cookie
only available in the www subdomain.

secure

Indicates that the cookie
should only be transmitted
over a secure HTTPS
connection. When set to
TRUE, the cookie will only
be set if a secure
connection exists. The
default is FALSE.

0 or 1

 Once the cookies have been set, they can be accessed on the next page load with

the $_COOKIE or $HTTP_COOKIE_VARS arrays. Note, autoglobals such as

$_COOKIE became available in PHP 4.1.0. $HTTP_COOKIE_VARS has existed

since PHP 3. Cookie values also exist in $_REQUEST.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 72

 Examples:

1. setcookie() send example
<?php

$value = 'something from somewhere';
setcookie("TestCookie", $value);
setcookie("TestCookie", $value, time()+3600); /* expire in 1 hour */
setcookie("TestCookie", $value, time()+3600, "/~rasmus/", ".example.com
", 1);

?>

2. read cookie example

<?php

// Print an individual cookie
echo $_COOKIE["TestCookie"];
echo $HTTP_COOKIE_VARS["TestCookie"];

// Another way to debug/test is to view all cookies
print_r($_COOKIE);

?>

3. setcookie() delete example

<?php
// set the expiration date to one hour ago
setcookie ("TestCookie", "", time() - 3600);
setcookie ("TestCookie", "", time() -
 3600, "/~rasmus/", ".example.com", 1);

?>

4. setcookie() and arrays

<?php
// set the cookies
setcookie("cookie[three]", "cookiethree");
setcookie("cookie[two]", "cookietwo");
setcookie("cookie[one]", "cookieone");

// after the page reloads, print them out
if (isset($_COOKIE['cookie']))
{
 foreach ($_COOKIE['cookie'] as $name => $value)

{
 echo "$name : $value
\n";
}

}
?>

Output:

three : cookiethree
two : cookietwo
one : cookieone

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 73

Predefined Variables

 HTTP Cookies: $_COOKIE

 An associative array of variables passed to the current script via HTTP cookies.

Automatically global in any scope.

 This is a 'superglobal', or automatic global, variable. This simply means that it is

available in all scopes throughout a script. You don't need to do a global

$_COOKIE; to access it within functions or methods, as you do with

$HTTP_COOKIE_VARS.

 $HTTP_COOKIE_VARS contains the same initial information, but is not an

autoglobal. (Note that $HTTP_COOKIE_VARS and $_COOKIE are different

variables and that PHP handles them as such)

 HTTP GET variables: $_GET
 An associative array of variables passed to the current script via the HTTP GET

method. Automatically global in any scope.

 This is a 'superglobal', or automatic global, variable. This simply means that it is

available in all scopes throughout a script. You don't need to do a global $_GET;

to access it within functions or methods, as you do with $HTTP_GET_VARS.

 $HTTP_GET_VARS contains the same initial information, but is not an

autoglobal. (Note that $HTTP_GET_VARS and $_GET are different variables and

that PHP handles them as such)

 HTTP POST variables: $_POST
 An associative array of variables passed to the current script via the HTTP POST

method. Automatically global in any scope.

 This is a 'superglobal', or automatic global, variable. This simply means that it is

available in all scopes throughout a script. You don't need to do a global $_POST;

to access it within functions or methods, as you do with $HTTP_POST_VARS.

 $HTTP_POST_VARS contains the same initial information, but is not an

autoglobal. (Note that $HTTP_POST_VARS and $_POST are different variables

and that PHP handles them as such)

 Request variables: $_REQUEST
 An associative array consisting of the contents of $_GET, $_POST, and

$_COOKIE.

 This is a 'superglobal', or automatic global, variable. This simply means that it is

available in all scopes throughout a script. You don't need to do a global

$_REQUEST; to access it within functions or methods.

 Global variables: $GLOBALS
 An associative array containing references to all variables which are currently

defined in the global scope of the script. The variable names are the keys of the

array.

 This is a 'superglobal', or automatic global, variable. This simply means that it is

available in all scopes throughout a script. You don't need to do a global

$GLOBALS; to access it within functions or methods.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 74

 Server variables: $_SERVER

 $_SERVER is an array containing information such as headers, paths, and script

locations. The entries in this array are created by the webserver. There is no

guarantee that every webserver will provide any of these; servers may omit some,

or provide others not listed here.

 This is a 'superglobal', or automatic global, variable. This simply means that it is

available in all scopes throughout a script. You don't need to do a global

$_SERVER; to access it within functions or methods, as you do with

$HTTP_SERVER_VARS.

 $HTTP_SERVER_VARS contains the same initial information, but is not an

autoglobal. (Note that $HTTP_SERVER_VARS and $_SERVER are different

variables and that PHP handles them as such)

 You may or may not find any of the following elements in $_SERVER.

 'GATEWAY_INTERFACE’: What revision of the CGI specification the server is

using; i.e. 'CGI/1.1'.

 'SERVER_NAME' : The name of the server host under which the current script

is executing. If the script is running on a virtual host, this will be the value defined

for that virtual host.

 'SERVER_SOFTWARE' : Server identification string, given in the headers when

responding to requests.

 'SERVER_PROTOCOL' : Name and revision of the information protocol via

which the page was requested; i.e. 'HTTP/1.0';

 'REQUEST_METHOD' : Which request method was used to access the page;

i.e. 'GET', 'HEAD', 'POST', 'PUT'.

 'REQUEST_TIME' : The timestamp of the start of the request. Available since

PHP 5.1.0.

 'QUERY_STRING' : The query string, if any, via which the page was accessed.

 'DOCUMENT_ROOT' : The document root directory under which the current

script is executing, as defined in the server's configuration file.

 'HTTP_ACCEPT' : Contents of the Accept: header from the current request, if

there is one.

 'HTTP_ACCEPT_CHARSET' : Contents of the Accept-Charset: header from the

current request, if there is one. Example: 'iso-8859-1,*,utf-8'.

 'HTTP_ACCEPT_ENCODING' : Contents of the Accept-Encoding: header from

the current request, if there is one. Example: ‘gzip’.

 ‘HTTP_ACCEPT_LANGUAGE’ : Contents of the Accept-Language: header

from the current request, if there is one. Example: 'en'.

 'HTTP_CONNECTION' : Contents of the Connection: header from the current

request, if there is one. Example: 'Keep-Alive'.

 'HTTP_HOST' : Contents of the Host: header from the current request, if there is

one.

 'HTTP_REFERER' : The address of the page (if any) which referred the user

agent to the current page. This is set by the user agent. Not all user agents will set

this, and some provide the ability to modify HTTP_REFERER as a feature. In

short, it cannot really be trusted.

 'HTTP_USER_AGENT' : Contents of the User-Agent: header from the current

request, if there is one. This is a string denoting the user agent being which is

accessing the page.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 75

 'HTTPS' : Set to a non-empty value if the script was queried through the HTTPS

protocol.

 'REMOTE_ADDR' : The IP address from which the user is viewing the current

page.

 'REMOTE_HOST' : The Host name from which the user is viewing the current

page. The reverse dns lookup is based off the REMOTE_ADDR of the user.

 'REMOTE_PORT' : The port being used on the user's machine to communicate

with the web server.

 'SCRIPT_FILENAME' : The absolute pathname of the currently executing

script.

 'SERVER_ADMIN' : The value given to the SERVER_ADMIN (for Apache)

directive in the web server configuration file. If the script is running on a virtual

host, this will be the value defined for that virtual host.

 'SERVER_PORT' : The port on the server machine being used by the web server

for communication. For default setups, this will be '80'; using SSL, for instance,

will change this to whatever your defined secure HTTP port is.

 'SERVER_SIGNATURE' : String containing the server version and virtual host

name which are added to server-generated pages, if enabled.

 'PATH_TRANSLATED' : Filesystem- (not document root-) based path to the

current script, after the server has done any virtual-to-real mapping.

 'SCRIPT_NAME' : Contains the current script's path. This is useful for pages

which need to point to themselves. The __FILE__ constant contains the full path

and filename of the current (i.e. included) file.

 'REQUEST_URI' : The URI which was given in order to access this page; for

instance, '/index.html'.

 'PHP_AUTH_DIGEST' : When running under Apache as module doing Digest

HTTP authentication this variable is set to the 'Authorization' header sent by the

client (which you should then use to make the appropriate validation).

 'PHP_AUTH_USER' : When running under Apache or IIS (ISAPI on PHP 5) as

module doing HTTP authentication this variable is set to the username provided

by the user.

 'PHP_AUTH_PW' : When running under Apache or IIS (ISAPI on PHP 5) as

module doing HTTP authentication this variable is set to the password provided

by the user.

 'AUTH_TYPE' :When running under Apache as module doing HTTP

authenticated this variable is set to the authentication type.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 76

 MySQL Database Management System

 MySQL, the most popular Open Source SQL database management system, is

developed, distributed, and supported by MySQL AB.

 MySQL AB is a commercial company, founded by the MySQL developers. It is a

second generation Open Source company that unites Open Source values and

methodology with a successful business model.

 The MySQL Web site (http://www.mysql.com/) provides the latest information

about MySQL software and MySQL AB.

 The official way to pronounce “MySQL” is “My Ess Que Ell” (not “my sequel”),

but we don't mind if you pronounce it as “my sequel” or in some other localized

way.

 MySQL Features :

 MySQL is a database management system.

 MySQL is a relational database management system.

 MySQL software is Open Source.

 The MySQL Database Server is very fast, reliable, and easy to use.

 MySQL Server works in client/server or embedded systems.

 A large amount of contributed MySQL software is available.

MySQL Function

 mysql_connect
 mysql_connect -- Open a connection to a MySQL Server

Syntax:

resource mysql_connect ([string server [, string username [, string password]]])

 Parameters

 server :The MySQL server. It can also include a port number. e.g.

"hostname:port" . If the PHP directive mysql.default_host is undefined (default),

then the default value is 'localhost:3306'

 username : The username. Default value is the name of the user that owns the

server process.

 password : The password. Default value is an empty password.

 Return Values : Returns a MySQL link identifier on success, or FALSE on

failure.

 mysql_close

 mysql_close -- Close MySQL connection

Syntax:

bool mysql_close ([resource link_identifier])

 link_identifier : The MySQL connection

 mysql_close() closes the non-persistent connection to the MySQL server that's

associated with the specified link identifier. If link_identifier isn't specified, the

last opened link is used.

 Using mysql_close() isn't usually necessary, as non-persistent open links are

automatically closed at the end of the script's executionParameters

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 77

Examples

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);

?>

 mysql_select_db

 mysql_select_db -- Select a MySQL database

 Syntax:

bool mysql_select_db (string database_name [, resource link_identifier])

 Sets the current active database on the server that's associated with the specified

link identifier.

 Parameters

 database_name : The name of the database that is to be selected.

 link_identifier : The MySQL connection. If the link identifier is not specified, the

last link opened by mysql_connect() is assumed.

 Return Values : Returns TRUE on success or FALSE on failure.

Examples

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

// make foo the current db

$db_selected = mysql_select_db('foo', $link);

if (!$db_selected) {

 die ('Can\'t use foo : ' . mysql_error());

}

 ?>

 mysql_query
 mysql_query -- Send a MySQL query

Syntax:

resource mysql_query (string query [, resource link_identifier])

 mysql_query() sends a query (to the currently active database on the server that's

associated with the specified link_identifier).

 Parameters

 query : A SQL query. The query string should not end with a semicolon.

 link_identifier : The MySQL connection. If the link identifier is not specified, the

last link opened by mysql_connect() is assumed.

 Return Values

 For SELECT, SHOW, DESCRIBE or EXPLAIN statements, mysql_query()

returns a resource on success, or FALSE on error.

 For other type of SQL statements, UPDATE, DELETE, DROP, etc,

mysql_query() returns TRUE on success or FALSE on error.

 mysql_query() will also fail and return FALSE if the user does not have

permission to access the table(s) referenced by the query.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 78

 mysql_num_rows

 mysql_num_rows -- Get number of rows in result

Syntax:

int mysql_num_rows (resource result)

 Retrieves the number of rows from a result set.

 This command is only valid for SELECT statements. To retrieve the number of

rows affected by a INSERT, UPDATE, or DELETE query, use

mysql_affected_rows().

 Parameters

 result : The result resource that is being evaluated. This result comes from a call

to mysql_query().

 Return Values : The number of rows in a result set on success, or FALSE on

failure.

 mysql_affected_rows
 mysql_affected_rows -- Get number of affected rows in previous MySQL

operation

Syntax:

int mysql_affected_rows ([resource link_identifier])

 Get the number of affected rows by the last INSERT, UPDATE or DELETE

query associated with link_identifier.

 Parameters

 link_identifier : The MySQL connection. If the link identifier is not specified, the

last link opened by mysql_connect() is assumed.

 Return Values: Returns the number of affected rows on success, and -1 if the last

query failed.

Examples

<?php
$link = mysql_connect("localhost", "user", "mysql_password");
mysql_select_db("database", $link);
$result = mysql_query("SELECT * FROM table1", $link);
$num_rows = mysql_num_rows($result);
echo "$num_rows Rows\n";

mysql_query('DELETE FROM mytable WHERE id < 10');
echo ("Records deleted: %d\n", mysql_affected_rows());

 ?>

 mysql_fetch_array
 mysql_fetch_array -- Fetch a result row as an associative array, a numeric array,

or both

Syntax:

array mysql_fetch_array (resource result [, int result_type])

 Returns an array that corresponds to the fetched row and moves the internal data

pointer ahead.

 Parameters

 result : The result resource that is being evaluated. This result comes from a call

to mysql_query().

 result_type : The type of array that is to be fetched. It's a constant and can take

the following values: MYSQL_ASSOC, MYSQL_NUM, and the default value of

MYSQL_BOTH.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 79

 Return Values : Returns an array that corresponds to the fetched row, or FALSE

if there are no more rows.

Examples

 mysql_fetch_array() with MYSQL_NUM

<?php

mysql_connect("localhost", "mysql_user", "mysql_password") or

 die("Could not connect: " . mysql_error());

mysql_select_db("mydb");

$result = mysql_query("SELECT id, name FROM mytable");

while ($row = mysql_fetch_array($result, MYSQL_NUM)) {

 printf("ID: %s Name: %s", $row[0], $row[1]);

}

mysql_free_result($result);

?>

 mysql_fetch_array() with MYSQL_ASSOC

<?php

mysql_connect("localhost", "mysql_user", "mysql_password") or

 die("Could not connect: " . mysql_error());

mysql_select_db("mydb");

$result = mysql_query("SELECT id, name FROM mytable");

while ($row = mysql_fetch_array($result, MYSQL_ASSOC)) {

 printf("ID: %s Name: %s", $row["id"], $row["name"]);

}

mysql_free_result($result);

?>

 mysql_fetch_array() with MYSQL_BOTH

<?php

mysql_connect("localhost", "mysql_user", "mysql_password") or

 die("Could not connect: " . mysql_error());

mysql_select_db("mydb");

$result = mysql_query("SELECT id, name FROM mytable");

while ($row = mysql_fetch_array($result, MYSQL_BOTH)) {

 printf ("ID: %s Name: %s", $row[0], $row["name"]);

}

mysql_free_result($result);

?>

 mysql_fetch_row
 mysql_fetch_row -- Get a result row as an enumerated array

Syntax:

array mysql_fetch_row (resource result)

 Returns a numerical array that corresponds to the fetched row and moves the

internal data pointer ahead.

 Parameters

 result : The result resource that is being evaluated. This result comes from a call

to mysql_query().

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 80

 Return Values : Returns an numerical array that corresponds to the fetched row,

or FALSE if there are no more rows.

 mysql_fetch_row() fetches one row of data from the result associated with the

specified result identifier. The row is returned as an array. Each result column is

stored in an array offset, starting at offset 0.

 Examples

<?php

$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");

if (!$result) {

 echo 'Could not run query: ' . mysql_error();

 exit;

}

$row = mysql_fetch_row($result);

echo $row[0]; // 42

echo $row[1]; // the email value

?>

 mysql_fetch_object
 mysql_fetch_object -- Fetch a result row as an object

Syntax:

object mysql_fetch_object (resource result)

 Returns an object with properties that correspond to the fetched row and moves

the internal data pointer ahead.

 Parameters

 result : The result resource that is being evaluated. This result comes from a call

to mysql_query().

 Return Values: Returns an object with properties that correspond to the fetched

row, or FALSE if there are no more rows.

 Example :

<?php

mysql_connect("hostname", "user", "password");

mysql_select_db("mydb");

$result = mysql_query("select * from mytable");

while ($row = mysql_fetch_object($result)) {

 echo $row->user_id;

 echo $row->fullname;

}

mysql_free_result($result);

?>

 mysql_num_fields
 mysql_num_fields -- Get number of fields in result

Syntax:

int mysql_num_fields (resource result)

 Retrieves the number of fields from a query.

 Parameters

 result : The result resource that is being evaluated. This result comes from a call

to mysql_query().

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 81

 Return Values : Returns the number of fields in the result set resource on

success, or FALSE on failure.

Example:

<?php

$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");

 /* returns 2 because id,email === two fields */

echo mysql_num_fields($result);

?>

 mysql_fetch_field
 mysql_fetch_field -- Get column information from a result and return as an object

Syntax:

object mysql_fetch_field (resource result [, int field_offset])

 Returns an object containing field information. This function can be used to

obtain information about fields in the provided query result.

 Parameters

 result : The result resource that is being evaluated. This result comes from a call

to mysql_query().

 field_offset : The numerical field offset. If the field offset is not specified, the

next field that was not yet retrieved by this function is retrieved. The field_offset

starts at 0.

 Return Values : Returns an object containing field information. The properties of

the object are:

 name - column name

 table - name of the table the column belongs to

 max_length - maximum length of the column

 not_null - 1 if the column cannot be NULL

 primary_key - 1 if the column is a primary key

 unique_key - 1 if the column is a unique key

 multiple_key - 1 if the column is a non-unique key

 numeric - 1 if the column is numeric

 blob - 1 if the column is a BLOB

 type - the type of the column

 unsigned - 1 if the column is unsigned

 zerofill - 1 if the column is zero-filled

 Examples

<?php
$conn = mysql_connect('localhost:3306', 'user', 'password');
if (!$conn) {
 die('Could not connect: ' . mysql_error());
}
 mysql_select_db('database');
$result = mysql_query('select * from table');
 /* get column metadata */
$i = 0;
while ($i < mysql_num_fields($result)) {
 echo "Information for column $i:
\n";
 $meta = mysql_fetch_field($result, $i);
 if (!$meta) {
 echo "No information available
\n";
 }

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 82

 echo "<pre>

blob: $meta->blob
max_length: $meta->max_length
multiple_key: $meta->multiple_key
name: $meta->name
not_null: $meta->not_null
numeric: $meta->numeric
primary_key: $meta->primary_key
table: $meta->table
type: $meta->type
unique_key: $meta->unique_key
unsigned: $meta->unsigned
zerofill: $meta->zerofill
</pre>";

$i++;
}
mysql_free_result($result);
?>

 mysql_field_name

 mysql_field_name -- Get the name of the specified field in a result

Syntax:

string mysql_field_name (resource result, int field_offset)

 Parameters

 result : The result resource that is being evaluated. This result comes from a call

to mysql_query().

 field_offset : The numerical field offset. The field_offset starts at 0. If field_offset

does not exist, an error of level E_WARNING is also issued.

 Return Values: The name of the specified field index on success, or FALSE on

failure.

 mysql_field_type
 mysql_field_type -- Get the type of the specified field in a result

Syntax:

string mysql_field_type (resource result, int field_offset)

 Parameters Same as mysql_field_name

 Return Values: The returned field type will be one of "int", "real", "string",

"blob", and others as detailed in the MySQL documentation.

 mysql_field_len

 mysql_field_len -- Returns the length of the specified field

Syntax:

int mysql_field_len (resource result, int field_offset)

 Parameters Same as mysql_field_name

 Return Values: The name of the specified field index on success, or FALSE on

failure.

 mysql_field_table
 mysql_field_table -- Get name of the table the specified field is in

Syntax:

string mysql_field_table (resource result, int field_offset)

 Parameters Same as mysql_field_name

 Return Values : The name of the table on success.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 83

 mysql_field_flags
 mysql_field_flags -- Get the flags associated with the specified field in a result

Syntax:

string mysql_field_flags (resource result, int field_offset)

 Parameters Same as mysql_field_name

 Return Values:

 Returns a string of flags associated with the result, or FALSE on failure.

 The following flags are reported, if your version of MySQL is current

enough to support them: "not_null", "primary_key", "unique_key",

"multiple_key", "blob", "unsigned", "zerofill", "binary", "enum",

"auto_increment" and "timestamp".

Example:

<?php
mysql_connect("localhost", "mysql_username", "mysql_password");
mysql_select_db("mysql");
$result = mysql_query("SELECT * FROM func");
$fields = mysql_num_fields($result);
$rows = mysql_num_rows($result);
$table = mysql_field_table($result, 0);
echo "Your '" . $table . "' table has " . $fields . " fields and " . $rows . " rec
ord(s)\n";

echo "The table has the following fields:\n";
for ($i=0; $i < $fields; $i++) {
 $type = mysql_field_type($result, $i);
 $name = mysql_field_name($result, $i);
 $len = mysql_field_len($result, $i);
 $flags = mysql_field_flags($result, $i);
 echo $type . " " . $name . " " . $len . " " . $flags . "\n";
}
mysql_free_result($result);
mysql_close();

?>

 mysql_data_seek

 mysql_data_seek -- Move internal result pointer

Syntax :

bool mysql_data_seek (resource result, int row_number)

 mysql_data_seek() moves the internal row pointer of the MySQL result associated

with the specified result identifier to point to the specified row number. The next

call to mysql_fetch_row() would return that row.

 row_number starts at 0. The row_number should be a value in the range from 0 to

mysql_num_rows() - 1. However if the result set is empty (mysql_num_rows() ==

0), a seek to 0 will fail with a E_WARNING and mysql_data_seek() will return

FALSE.

 Parameters

 result : The result resource that is being evaluated. This result comes from a call

to mysql_query().

 row_number : The desired row number of the new result pointer.

 Return Values: Returns TRUE on success or FALSE on failure.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 84

 mysql_field_seek
 mysql_field_seek -- Set result pointer to a specified field offset

Syntax:

bool mysql_field_seek (resource result, int field_offset)

 Seeks to the specified field offset. If the next call to mysql_fetch_field() doesn't

include a field offset, the field offset specified in mysql_field_seek() will be

returned.

 Parameters

 result : The result resource that is being evaluated. This result comes from a call

to mysql_query().

 field_offset : The numerical field offset. The field_offset starts at 0. If field_offset

does not exist, an error of level E_WARNING is also issued.

Example :
<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
 mysql_select_db('sample_db');
 $query = 'SELECT last_name, first_name FROM friends';
$result = mysql_query($query);
 /* fetch rows in reverse order */
for ($i = mysql_num_rows($result) - 1; $i >= 0; $i--)
{
 if (!($row = mysql_fetch_assoc($result))) {
 continue;
 }
 echo $row['last_name'] . ' ' . $row['first_name'] . "
\n";
}
// mysql_field_seek
mysql_field_seek ($result,1);
$obj=mysql_fetch_field ($result);
echo “ Field NAME:= $obj->name TYPE := $obj->type”;

mysql_free_result($result);

?>

 mysql_list_dbs

 mysql_list_dbs -- List databases available on a MySQL server

 Syntax:

resource mysql_list_dbs ([resource link_identifier])

 Returns a result pointer containing the databases available from the current mysql

daemon.

 Parameters

 link_identifier : The MySQL connection. If the link identifier is not specified,

the last link opened by mysql_connect() is assumed.

 Return Values : Returns a result pointer resource on success, or FALSE on

failure.

Examples

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

$db_list = mysql_list_dbs($link);

while ($row = mysql_fetch_object($db_list)) {

 echo $row->Database . "\n";

}

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 85

 mysql_list_tables
 mysql_list_tables -- List tables in a MySQL database

Syntax:

resource mysql_list_tables (string database [, resource link_identifier])

 Retrieves a list of table names from a MySQL database.

 This function deprecated. It is preferable to use mysql_query() to issue a SQL

SHOW TABLES [FROM db_name] [LIKE 'pattern'] statement instead.

 Parameters:

 database : The name of the database

 link_identifier :The MySQL connection. If the link identifier is not specified, the

last link opened by mysql_connect() is assumed.

 Return Values: A result pointer resource on success, or FALSE on failure.

Example:

<?php

 $link = mysql_connect('pdc', 'gautam', 'milan');

 $tb_list = mysql_list_tables("mysql");

 while ($row = mysql_fetch_array($tb_list))

 {

 echo $row[0];

 echo "
";

 }

?>

 mysql_list_fields
 mysql_list_fields -- List MySQL table fields

Syntax:

resource mysql_list_fields (string database_name, string table_name [,

resource link_identifier])

 Retrieves information about the given table name.

 This function is deprecated. It is preferable to use mysql_query() to issue a SQL

SHOW COLUMNS FROM table [LIKE 'name'] statement instead.

 Parameters

 database_name : The name of the database that's being queried.

 table_name : The name of the table that's being queried.

 link_identifier : The MySQL connection. If the link identifier is not specified, the

last link opened by mysql_connect() is assumed.

 Return Values : A result pointer resource on success, or FALSE on failure.

 mysql_free_result
 mysql_free_result -- Free result memory

Syntax:

bool mysql_free_result (resource result)

 mysql_free_result() will free all memory associated with the result identifier

result.

 mysql_free_result() only needs to be called if you are concerned about how much

memory is being used for queries that return large result sets. All associated result

memory is automatically freed at the end of the script's execution.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 86

 Parameters

 result : The result resource that is being evaluated. This result comes from a call

to mysql_query().

 Return Values : Returns TRUE on success or FALSE on failure.

 mysql_errno
 mysql_errno -- Returns the numerical value of the error message from previous

MySQL operation

Syntax:

int mysql_errno ([resource link_identifier])

 Returns the error number from the last MySQL function.

 Errors coming back from the MySQL database backend no longer issue warnings.

Instead, use mysql_errno() to retrieve the error code.

 Note that this function only returns the error code from the most recently executed

MySQL function (not including mysql_error() and mysql_errno()), so if you want

to use it, make sure you check the value before calling another MySQL function.

 Parameters

 link_identifier : The MySQL connection. If the link identifier is not specified, the

last link opened by mysql_connect() is assumed.

 Return Values : Returns the error number from the last MySQL function, or 0

(zero) if no error occurred.

 mysql_error
 mysql_error -- Returns the text of the error message from previous MySQL

operation

Syntax:

string mysql_error ([resource link_identifier])

 Returns the error text from the last MySQL function.

 Parameters

 link_identifier : The MySQL connection. If the link identifier is not specified, the

last link opened by mysql_connect() is assumed.

 Return Values: Returns the error text from the last MySQL function, or '' (empty

string) if no error occurred.

Examples

<?php

$link = mysql_connect("localhost", "mysql_user", "mysql_password");

mysql_select_db("nonexistentdb", $link);

echo mysql_errno($link) . ": " . mysql_error($link). "\n";

 ?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 87

Sessions

A session can be defined as a series of related instructions between a single client

and the web server, which take a place over an extended period of time. this could be
a series of transactions that a user make while updating his stock or the set of requests
that are made to check an e-mail account through a browser base e-mail service.

Particularly when you want to work with sensitive information , it make a lot of
sense to submit it once and have it stored on the server rather then client machine.

Session support in PHP consists of a way to preserve certain data across
subsequent accesses. This enables you to build more customized applications and
increase the appeal of your web site.

A visitor accessing your web site is assigned an unique id, the so-called session
id. This is either stored in a cookie on the user side or is propagated in the URL.

The session support allows you to register arbitrary numbers of variables to be
preserved across requests. When a visitor accesses your site, PHP will check
automatically (if session.auto_start is set to 1) or on your request (explicitly through
session_start() or implicitly through session_register()) whether a specific session id
has been sent with the request. If this is the case, the prior saved environment is
recreated.

All registered variables are serialized after the request finishes. Registered
variables which are undefined are marked as being not defined. On subsequent
accesses, these are not defined by the session module unless the user defines them
later.

When working with sessions that a record of a session is not created until a

variable has been registered using the session_register() function or by adding a new
key to the $_SESSION superglobal array. This holds true regardless of if a session has
been started using the session_start() function.

 session_id

 session_id -- Get and/or set the current session id

syntax:

string session_id ([string id])

 session_id() is used to get or set the session id for the current session.

 The constant SID can also be used to retrieve the current name and session id as a

string suitable for adding to URLs.

 Note that SID is only defined if the client didn't send the right cookie. See also

Session handling.

 Parameters

 id : If id is specified, it will replace the current session id. session_id() needs to be

called before session_start() for that purpose.

 When using session cookies, specifying an id for session_id() will always send a

new cookie when session_start() is called, regardless if the current session id is

identical to the one being set.

 Return Values : session_id() returns the session id for the current session or the

empty string ("") if there is no current session (no current session id exists).

 session_name
 session_name -- Get and/or set the current session name

Syntax:

string session_name ([string name])

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 88

 session_name() returns the name of the current session. If name is specified, the

name of the current session is changed to its value.

 The session name references the session id in cookies and URLs. It should contain

only alphanumeric characters; it should be short and descriptive (i.e. for users

with enabled cookie warnings).

 The session name is reset to the default value stored in session.name at request

startup time. Thus, you need to call session_name() for every request (and before

session_start() or session_register() are called).

 Session name can't consist only from digits, at least one letter must be present.

Otherwise new session id is generated every time.

 session_start

 session_start -- Initialize session data

Syntax:

bool session_start (void)

 session_start() creates a session or resumes the current one based on the current

session id that's being passed via a request, such as GET, POST, or a cookie.

 This function always returns TRUE.

 If you are using cookie-based sessions, you must call session_start() before

anything is outputted to the browser.

Example:

 page1.php

<?php
session_start();
echo 'Welcome to page #1';
echo "Session ID :=" . session_id();
echo "Session Name :=" . session_name();

$_SESSION['favcolor'] = 'green';
$_SESSION['animal'] = 'cat';
$_SESSION['time'] = time();

echo '
page 2';

?>

 After viewing page1.php, the second page page2.php will magically contain the

session data.

page2.php

<?php
session_start();

echo 'Welcome to page #2
';

echo $_SESSION['favcolor']; // green
echo $_SESSION['animal']; // cat
echo date('Y m d H:i:s', $_SESSION['time']);

echo '
page 1';

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 89

 session_unset
 session_unset -- Free all session variables

Syntax:

void session_unset (void)

 The session_unset() function frees all session variables currently registered.

 If $_SESSION (or $HTTP_SESSION_VARS for PHP 4.0.6 or less) is used, use

unset() to unregister a session variable, i.e. unset ($_SESSION['varname']);.

 Do NOT unset the whole $_SESSION with unset($_SESSION) as this will disable

the registering of session variables through the $_SESSION superglobal.

 session_cache_limiter
 session_cache_limiter -- Get and/or set the current cache limiter

Syntax:

string session_cache_limiter ([string cache_limiter])

 session_cache_limiter() returns the name of the current cache limiter. If

cache_limiter is specified, the name of the current cache limiter is changed to the

new value.

 The cache limiter defines which cache control HTTP headers are sent to the

client. These headers determine the rules by which the page content may be

cached by the client and intermediate proxies.

 Setting the cache limiter to nocache disallows any client/proxy caching. A value

of public permits caching by proxies and the client, whereas private disallows

caching by proxies and permits the client to cache the contents.

 session_cache_expire
 session_cache_expire -- Return current cache expire

Syntax:

int session_cache_expire ([int new_cache_expire])

 session_cache_expire() returns the current setting of session.cache_expire. The

value returned should be read in minutes, defaults to 180. If new_cache_expire is

given, the current cache expire is replaced with new_cache_expire.

 The cache expire is reset to the default value of 180 stored in

session.cache_limiter at request startup time. Thus, you need to call

session_cache_expire() for every request (and before session_start() is called).

Example:

<?php
/* set the cache limiter to 'public' */
session_cache_limiter('public');
$cache_limiter = session_cache_limiter();

/* set the cache expire to 30 minutes */
session_cache_expire(30);
$cache_expire = session_cache_expire();

session_start();

echo "The cache limiter is now set to $cache_limiter
";
echo "The cached session pages expire after $cache_expire minutes";

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 90

 session_destroy

 session_destroy -- Destroys all data registered to a session

Syntax:

bool session_destroy (void)

 session_destroy() destroys all of the data associated with the current session.

 It does not unset any of the global variables associated with the session, or unset

the session cookie.

 Returns TRUE on success or FALSE on failure.

Example:

<?php

session_start();

// Unset all of the session variables.

$_SESSION = array();

// If it's desired to kill the session, also delete the session cookie.

// Note: This will destroy the session, and not just the session data!

if (isset($_COOKIE[session_name()])) {

 setcookie(session_name(), '', time()-42000, '/');

}

// Finally, destroy the session.

session_destroy();

?>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 91

 PHP Debugging Basics:

 Whether you're a PHP newbie or a wizard, your programs are going to have bugs

in them.

 An error message that the PHP interpreter generates falls into one of five different

categories:

 Parse error: A problem with the syntax of your program, such as leaving a

semicolon off of the end of a statement. The interpreter stops running your

program when it encounters a parse error.

 Fatal error: A severe problem with the content of your program, such as

calling a function that hasn't been defined. The interpreter stops running your

program when it encounters a fatal error.

 Warning: An advisory from the interpreter that something is fishy in your

program, but the interpreter can keep going. Using the wrong number of

arguments when you call a function causes a warning.

 Notice: A tip from the PHP interpreter, playing the role of Miss Manners. For

example, printing a variable without first initializing it to some value

generates a notice.

 Strict notice: An admonishment from the PHP interpreter about your coding

style. Most of these have to do with esoteric features that changed between

PHP 4 and PHP 5, so you're not likely to run into them too much.

 Configuring Error Reporting

 First of all, you need to configure the PHP interpreter so that when an error

happens, you can see information about it. The error info can be sent along

with program output to the web browser.

 To make error messages display in the browser, set the display_errors

configuration directive to On.

 To send errors to the web server error log, set log_errors to On. You can set

them both to On if you want error messages in both places.

 The error_reporting configuration directive controls which kinds of errors the

PHP interpreter reports. The default value for error_reporting is E_ALL &

~E_NOTICE & ~E_STRICT, which tells the interpreter to report all errors

except notices and strict notices.

 PHP defines some constants you can use to set the value of error_reporting so

that only errors of certain types get reported: E_ALL (for all errors except

strict notices), E_PARSE (parse errors), E_ERROR (fatal errors),

E_WARNING (warnings), E_NOTICE (notices), and E_STRICT (strict

notices).

 Inspecting Program Data

 If your program is acting funny, add some checkpoints that display the values

of variables. That way, you can see where the program's behavior diverges

from your expectations.

 The following program incorrectly attempts to calculate the total cost of a few

items:

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 92

<?php

$prices = array(5.95, 3.00, 12.50);
$total_price = 0;
$tax_rate = 1.08; // 8% tax

foreach ($prices as $price) {

 $total_price = $price * $tax_rate;
}

printf('Total price (with tax): $%.2f', $total_price);

?>

The program doesn't do the right thing. It prints:
Total price (with tax): $13.50

The total price of the items should be at least $20.

One way you can try to find out is to insert a line in the foreach() loop that prints the
value of $total_price before and after it changes.

<php

$prices = array(5.95, 3.00, 12.50);
$total_price = 0;
$tax_rate = 1.08; // 8% tax

foreach ($prices as $price) {

 print "[before: $total_price]";
 $total_price = $price * $tax_rate;
 print "[after: $total_price]";

}

printf('Total price (with tax): $%.2f', $total_price);
?>

This program prints:
[before: 0][after: 6.426][before: 6.426][after: 3.24][before: 3.24][after: 13.5]Total price
(with tax): $13.50

From analyzing the debugging output, you can see that $total_price isn't increasing on
each trip through the foreach() loop. Scrutinizing the code further leads you to the
conclusion that the line:

$total_price = $price * tax_rate;
should be

$total_price += $price * tax_rate;

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 93

 How HTTP Works?

 When a request for a webpages is sent to the server, it contains more then just the

desired URL. There is a lot of extra information that is sent as part of the request.

This is also true of the response – the server send extra information back to the

web browser.

 Whether it’s a client request or a server response, every HTTP message has the

same format, which break down in three sections:

 The request / response line

 The HTTP header

 The HTTP body

 The HTTP Request
 The HTTP request that the browser sends to the Web server contains a request

line, a header and a body

 Here’s an example of the request line and header:

GET / testpage.htm HTTP/1.1

Accept: * / *

Accept-Language: en-us

Connection: Keep-Alive

Host: www.wrox.com

User-Agent: Mozila (X11; I; Linux 2.0.32 i586)

 The Request Line:
 The first line of every request is the request line, which contain three piece of

information:

 An HTTP command known as method (GET / POST)

 The path from the server to the resource that the client is requesting

 The version number of HTTP

In Above Example :

 GET / testpage.htm HTTP/1.1

 The HTTP Request Header:
 The next bit information sent is the HTTP header.

 The HTTP request header contains information that falls into three different

categories:

 General: Information about either the client or server, but not

specific to one or the other.

 Entity: Information about datat being sent between the client and

server.

 Request: Information about the client configuration and different

type of acceptable documents.

 A blank line to indicate that the header information is complete.

In Above Example :

Accept: * / *

Accept-Language: en-us

Connection: Keep-Alive

Host: www.wrox.com

User-Agent: Mozila (X11; I; Linux 2.0.32 i586)

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 94

 The HTTP Request Body:
 If the POST method is used in the HTTP request line then the HTTP request

body contains any data that is being sent to the server.

 Otherwise HTTP request body is empty, as it is in the example.

 The HTTP Response:
 The HTTP response is sent by the server back to the client browser, and

contains a response line, a header and a body.

 Here’s an example of the response line and header:

HTTP/1.1 200 OK //the status line

Date: Fri, 31st Oct 2005 12:12:19 //the General header

Server: Apache/1.3.12 (Unix) PHP/5.0.2 //the response header

Last-modified: Tue, 26th Oct 2005 10:13:19 //the General header

 //blank line

 The Response Line:
 The response line contains only two bits of information:

 The HTTP version number.

 An HTTP request code that reports the success or failure of the

request

In Above Example:

HTTP/1.1 200 OK

 The Response Header:
 The HTTP response header is similar to the preceding request header.

 In the HTTP response, the header information again fall into three types:

 General: Information about either the client or server, but not

specific to one or the other.

 Entity: contains information about datat being sent between the

client and server.

 Response: contains information about the server sending the

response and how it can deal with the response.

 A blank line to indicate that the header information is complete.

In Above Example:

Date: Fri, 31st Oct 2005 12:12:19 //the General header

Server: Apache/1.3.12 (Unix) PHP/5.0.2 //the response header

Last-modified: Tue, 26th Oct 2005 10:13:19 //the General header

 //blank line

 The Response Body:
 If the request was successful, the HTTP response body contains the HTML

code, ready for the browser’s interpretation.

 If unsuccessful, a failure code is sent.

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 95

 IIS Installation Step

1. Start -> Settings -> Control Panel -> Add/Remove Programs -> Add/Remove
Windows Components

2. Select "Internet Information Services (IIS)" then click on "Details".
3. Some of the components you do not need, but for this example, we'll install the

whole IIS package since we want the web server, FTP server, and mail
capabilities.

4. Click on "Next" The dialog box will show files being copied to your hard disk.
5. After a few moments, you'll get this dialog box that ask you to insert the

Windows 2000 CD into your CD-ROM drive. Put in the CD then click "OK".
6. The files will continue to be copied. This could take a while. When everything is

done, you'll see this screen. Click on "Finish".

 Configure PHP on IIS Web Server

1. Go to your Windows Control Panel then click on Administrative Tools and then
Click Internet Information Services icon.

2. Expand the tree and Right click on the Default Web Site and click on the
Properties.

3. The Default Web Site properties appear, now click on the Home Directory
4. In the Home Directory properties click on the Configuration button.
5. In the Application Configuration properties click on the Add button.
6. Now you get the Add/Edit Application Extension Mapping window enter the

executable as C:\PHP\PHP.EXE (or the appropriate location where you have
installed PHP) and the extension as .php as shown in the above figure and click
OK you have successfully configured PHP on your IIS Web Server!

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 96

 Apache Web Server Configuration File

 The configuration directives are grouped into three basic sections:
1. Directives that control the operation of the Apache server process as a

 whole (the 'global environment').
2. Directives that define the parameters of the 'main' or 'default' server,

which responds to requests that aren't handled by a virtual host. These
directives also provide default values for the settings of all virtual hosts.

3. Settings for virtual hosts, which allow Web requests to be sent to
different IP addresses or hostnames and have them handled by the same
Apache server process.

Section 1: Global Environment

 ServerType
 ServerType is either inetd, or standalone.
 Inetd mode is only supported onUnix platforms.

ServerType standalone

 ServerRoot:

 The top of the directory tree under which the server's configuration, error,
and log files are kept.

 Do NOT add a slash at the end of the directory path.

ServerRoot "D:/Program Files/Apache Group/Apache"

 Timeout:
 The number of seconds before receives and sends time out.

Timeout 300

 KeepAlive:
 Whether or not to allow persistent connections (more than one request per

connection).
 Set to "Off" to deactivate.

KeepAlive On

 KeepAliveTimeout:

 Number of seconds to wait for the next request from the same client on the
same connection.

KeepAliveTimeout 15

 AddModule

 Apache Modules compiled into the standard Windows build
 This is an advanced option that may render your server inoperable! Do not

use these directives without expert guidance.

AddModule mod_php5.c

 LoadModule [Dynamic Shared Object (DSO) Support]
 To be able to use the functionality of a module which was built as a DSO

you have to place corresponding `LoadModule' lines at this location so the
directives contained in it are actually available _before_ they are used.

 The order in which modules are loaded is important. Don't change the
order below without expert advice.

LoadModule php5_module "D:/php/php5apache.dll"

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 97

Section 2: 'Main' server configuration

 Port:
 The port to which the standalone server listens.
 Certain firewall products must be configured before Apache can listen to a

specific port.

Port 80

 ServerName
 ServerName allows you to set a host name which is sent back to clients for

your server if it's different than the one the program would get (i.e., use
"www" instead of the host's real name).

 You cannot just invent host names and hope they work. The name you
define here must be a valid DNS name for your host. If you don't
understand this, ask your network administrator.

 If your host doesn't have a registered DNS name, enter its IP address here.
You will have to access it by its address (e.g., http://123.45.67.89/)
anyway, and this will make redirections work in a sensible way.

 127.0.0.1 is the TCP/IP local loop-back address, often named localhost.
Your machine always knows itself by this address.

 If you use Apache strictly for local testing and development, you may use
127.0.0.1 as the server name.

#ServerName new.host.name

 DocumentRoot:
 The directory out of which you will serve your documents.
 By default, all requests are taken from this directory, but symbolic links

and aliases may be used to point to other locations.

#DocumentRoot "D:/Program Files/Apache Group/Apache/htdocs"
DocumentRoot "D:/gautam"

 Directory

 This should be changed to whatever you set DocumentRoot to.

<Directory "D:/Program Files/Apache Group/Apache/htdocs">
<Directory "D:/gautam">

 AddType

 TypesConfig describes where the mime.types file (or equivalent) is to be
found.

<IfModule mod_mime.c>
 AddType application/x-httpd-php .php
 AddType application/x-httpd-php .php3
 AddType application/x-httpd-php-source .phps
 TypesConfig conf/mime.types
</IfModule>

WEB DEVELOPMENT Using PHP

College of Agricultural Information Technology – Anand Page No 98

Section 3: Virtual Hosts

 VirtualHost:
 If you want to maintain multiple domains/hostnames on your machine you

can setup VirtualHost containers for them.
 Most configurations use only name-based virtual hosts so the server

doesn't need to worry about IP addresses. This is indicated by the asterisks
in the directives below.

 Use name-based virtual hosting.

NameVirtualHost *

 VirtualHost example:

 Almost any Apache directive may go into a VirtualHost container.
 The first VirtualHost section is used for requests without a known server

name.

<VirtualHost *>
 ServerAdmin webmaster@dummy-host.example.com

DocumentRoot /www/docs/dummy-host.example.com
ServerName dummy-host.example.com
ErrorLog logs/dummy-host.example.com-error_log
CustomLog logs/dummy-host.example.com-access_log common

</VirtualHost>

